Skip to main content
Log in

C 4 Dissymmetric resorcinarene derivatives: synthesis, crystal structure and micelle formation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of a C 4 dissymmetric resorcinarene tetracarboxylic acid derivative and determination of its critical micelle concentration is reported. The tetrahydroxy derivative was prepared by reduction of the tetra-acid. The low-temperature single crystal X-ray structure of the methyl ester derivative of the tetra-acid is also reported. This crystallised with two independent molecules of similar boat (flattened cone) conformation within the asymmetric unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

Notes

  1. Calixarene nomenclature follows that recommended by IUPAC. See: Favre et al. [27] and McIldowie et al. [5] for calixarene examples.

References

  1. Nimse, S.B., Kim, T.: Biological applications of functionalized calixarenes. Chem. Soc. Rev. 42, 366–386 (2013)

    Article  CAS  Google Scholar 

  2. Li, N., Harrison, R.G., Lamb, J.D.: Application of resorcinarene derivatives in chemical separations. J. Incl. Phenom. Macrocycl. Chem. 78, 39–60 (2014)

    Article  CAS  Google Scholar 

  3. Kim, H.J., Lee, M.H., Mutihac, L., Vicens, J., Kim, J.S.: Host–guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 41, 1173–1190 (2012)

    Article  CAS  Google Scholar 

  4. Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)

    Article  CAS  Google Scholar 

  5. McIldowie, M.J., Mocerino, M., Ogden, M.I.: A brief review of C n -symmetric calixarenes and resorcinarenes. Supramol. Chem. 22, 13–39 (2010)

    Article  CAS  Google Scholar 

  6. Szumna, A.: Inherently chiral concave molecules—from synthesis to applications. Chem. Soc. Rev. 39, 4274–4285 (2010)

    Article  CAS  Google Scholar 

  7. Michels, J.J., Huskens, J., Engbersen, J.F.J., Reinhoudt, D.N.: Probing the interactions of calix[4]arene-based amphiphiles and cyclodextrins in water. Langmuir 16, 4864–4870 (2000)

    Article  CAS  Google Scholar 

  8. Arimori, S., Nagasaki, T., Shinkai, S.: Self-assembly of tetracationic amphiphiles bearing a calix[4]arene core. Correlation between the core structure and the aggregation properties. J. Chem. Soc. Perkin Trans 2, 679–683 (1995)

    Article  Google Scholar 

  9. Balasubramanian, R., Kim, B., Tripp, S.L., Wang, X., Lieberman, M., Wei, A.: Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir 18, 3676–3681 (2002)

    Article  CAS  Google Scholar 

  10. Stavens, K.B., Pusztay, S.V., Zou, S., Andres, R.P., Wei, A.: Encapsulation of neutral gold nanoclusters by resorcinarenes. Langmuir 15, 8337–8339 (1999)

    Article  CAS  Google Scholar 

  11. Rizzi, A.: Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis 22, 3079–3106 (2001)

    Article  CAS  Google Scholar 

  12. Amini, A.: Recent developments in chiral capillary electrophoresis and applications of this technique to pharmaceutical and biomedical analysis. Electrophoresis 22, 3107–3130 (2001)

    Article  CAS  Google Scholar 

  13. Davidson, T.A., Mondal, K., Yang, X.: Use of a chiral surfactant for enantioselective reduction of a ketone. J. Colloid Interface Sci. 276, 498–502 (2004)

    Article  CAS  Google Scholar 

  14. Baczko, K., Larpent, C., Lesot, P.: New amino acid-based anionic surfactants and their use as enantiodiscriminating lyotropic liquid crystalline NMR solvents. Tetrahedron Asymm. 15, 971–982 (2004)

    Article  CAS  Google Scholar 

  15. Bazzanella, A., Mörbel, H., Bächmann, K., Milbradt, R., Böhmer, V., Vogt, W.: Highly efficient separation of amines by electrokinetic chromatography using resorcarene-octacarboxylic acids as pseudostationary phases. J. Chromatogr. A792, 143–149 (1997)

    Article  Google Scholar 

  16. Wang, W., Zhu, X., Yan, C.: Determination of safranine T in food samples by CTAB sensitised fluorescence quenching method of the derivatives of calix[4]arene. Food Chem. 141, 2207–2212 (2013)

    Article  CAS  Google Scholar 

  17. Ungaro, R., Pochini, A., Andreeti, G.D.: New ionisable ligands from p.t-butylcalix[4]arene. J. Incl. Phenom. 2, 199–206 (1984)

    Article  CAS  Google Scholar 

  18. McKervey, M.A., Seward, E.M.: Molecular receptors. Synthesis and X-ray crystal structure of a calix[4]arene tetracarbonate-acetonitrile (1:1) clathrate. J. Org. Chem. 51, 3581–3584 (1986)

    Article  CAS  Google Scholar 

  19. Buckley, B.R., Boxhall, J.Y., Page, P.C.B., Chan, Y., Elsegood, M.R.J., Heaney, H., Holmes, K.E., McIldowie, M.J., McKee, V., McGrath, M.J., Mocerino, M., Poulton, A.M., Sampler, E.P., Skelton, B.W., White, A.H.: Mannich and O-alkylation reactions of tetraalkocyresorcin[4]arenes—the use of some products in ligand-assisted reactions. Eur. J. Org. Chem. 2006, 5117-5134 (2006)

  20. McIldowie, M.J., Mocerino, M., Skelton, B.W., White, A.H.: Facile Lewis acid catalyzed synthesis of C 4 symmetric resorcinarenes. Org. Lett. 2, 3869–3871 (2000)

    Article  CAS  Google Scholar 

  21. Spencer, W., Sutter, J.R.: Kinetic study of the monomer-dimer equilibrium of methylene blue in aqueous solution. J. Phys. Chem. 83, 1573–1576 (1979)

    Article  CAS  Google Scholar 

  22. Domínguez, A., Fernández, A., González, N., Iglesias, E., Montenegro, L.: Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 74, 1227–1231 (1997)

    Article  Google Scholar 

  23. Rosen, M.J.: Surfactants and Interfacial Phenomena. Wiley, New York (1978)

    Google Scholar 

  24. Naemura, K., Miyabe, H., Shingai, Y., Tobe, Y.: Preparation and enantiomer recognition behaviour of crown ethers containing cis-1-phenylcyclohexane-1,2-diol and trans-1,2-diphenylcyclohexane-1,2-diol as a chiral subunit. J. Chem. Soc. Perkin Trans. 1, 1073–1077 (1993)

    Article  Google Scholar 

  25. Pietraszkiewicz, M., Kozbial, M.: Enantiomeric differentiation of amino acids by a chiral crown ether derived from d-mannose studied by the liquid membrane technique. J. Incl. Phenom. Macrocycl. Chem. 14, 339–348 (1992)

    Article  CAS  Google Scholar 

  26. Hyun, M.H., Han, S.C., Lipshutz, B.H., Shin, Y.-J., Welch, C.J.: Liquid chromatographic resolution of racemic amines, amino alcohols and related compounds on a chiral crown ether stationary phase. J. Chromatogr. A959, 75–83 (2002)

    Article  Google Scholar 

  27. Favre, H.A., Hellwinkel, D., Powell, W.H., Smith Jr, H.A., Tsay, S.S.-C.: Phane nomenclature. Part II. Modification of the degree of hydrogenation and substitution derivatives of phane parent hydrides (IUPAC Recommendations 2002). Pure Appl. Chem. 74, 809–834 (2002)

    Article  CAS  Google Scholar 

  28. Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. Sect. A 64, 112–122 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Mocerino.

Additional information

Dedicated to Professor Jack Harrowfield on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIldowie, M.J., Mocerino, M., Ogden, M.I. et al. C 4 Dissymmetric resorcinarene derivatives: synthesis, crystal structure and micelle formation. J Incl Phenom Macrocycl Chem 82, 47–51 (2015). https://doi.org/10.1007/s10847-015-0525-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0525-8

Keywords

Navigation