Skip to main content

Advertisement

Log in

Application of QSPR for prediction of the complexation stabilities of Sm(III) with ionophores applied in lanthanoid sensors

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The increase use of ion sensors in different fields leads to many intensive studies to introduce sensing materials or selectophores in the fabrication of ion-selective electrodes. In this study the complexation stability of samarium ion with different ionophores was efficiently predicted by the QSPR model. Since the selectivity of ionophores can be defined by the stability constants of samarium–ionophore complexes, quantitative structure–property relationship (QSPR) studies on complex stability constants (log K) were carried out. The suitable subset of molecular descriptors was calculated and the genetic algorithm was employed to select those descriptors that resulted in the best-fit models. The multiple linear regression (MLR) method was utilized to construct the linear QSPR models. The best model showed most accurate predictions with the Leave-One-Out cross validation (Q 2LOO  = 0.912), Leave-Group-Out cross validation (Q 2LGO  = 0.907), external test set and Y-randomization. Also, the applicability domain of the model was analysed by the leverage approach. According to the best of our knowledge, this is the first research on QSPR studies for testing and estimating selectophores in samarium sensors based on complex stability constants. This report could be an experimental guide to find and design of highly selective sensors for Sm(III) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ganjali, M.R., Rezapour, M.: Encyclopedia of Sensors, Potentiometric Ion Sensors, vol. 8, pp. 197–288. American Scientific Publisher (ASP), Stevenson Ranch (2006)

    Google Scholar 

  2. Fricker, S.P.: The therapeutic application of lanthanides. Chem. Soc. Rev. 35, 524–533 (2006)

    Article  CAS  Google Scholar 

  3. Toropov, A.A., Toropova, A.P., Rasulev, B.F., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J.: Coral, QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical. J. Comput. Chem. 33, 1902–1906 (2012)

    Article  CAS  Google Scholar 

  4. Li, D., Liu, M.S., Ji, B., Hwang, K.C., Yongga, H.: Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease. Chem. Biol. Drug Des. 80, 440–454 (2012)

    Article  CAS  Google Scholar 

  5. Fayet, G., Rotureau, P.A., Joubert, L., Adamo, C.: Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms. J. Mol. Model. 17, 2443–2453 (2011)

    Article  CAS  Google Scholar 

  6. Goodarzi, M., Chen, T., Freitas, M.P.: QSPR predictions of heat of fusion of organic compounds using Bayesian regularized artificial neural networks. Chemom. Intell. Lab. Syst. 104, 260–264 (2010)

    Article  CAS  Google Scholar 

  7. Katritzky, A.R., Stoyanova-Slavova, I.B., Dobchev, D.A., Karelson, M.: QSPR modeling of flash points: an update. J. Mol. Gr. Model. 26, 529–536 (2007)

    Article  CAS  Google Scholar 

  8. Ahmadi, S.: Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation. J. Incl. Phenom. Macrocycl. Chem. 74, 57–66 (2012)

    Article  CAS  Google Scholar 

  9. Mirkhani, S.A., Gharagheizi, F., Farahani, N., Tumba, K.: Prediction of surface tension of ionic liquids by molecular approach. J. Mol. Liq. 179, 78–87 (2013)

    Article  CAS  Google Scholar 

  10. Silla, J.M., Nunes, C.A., Cormanich, R.A., Guerreiro, M.C., Ramalho, T.C., Freitas, M.P.: MIA- QSPR and effect of variable selection on the modeling of kinetic parameters related to activities of modified peptides against dengue type 2. Chemom. Intell. Lab. Syst. 108, 146–149 (2011)

    Article  CAS  Google Scholar 

  11. Kiani-Anbouhi, R., Ganjali, M.R., Norouzi, P.: Prediction of the complexation stabilities of La3+ ion with ionophores applied in lanthanoid sensors. J. Incl. Phenom. Macrocycl. Chem. 78, 325–336 (2014)

    Article  CAS  Google Scholar 

  12. Kirk, O.R., Othmer, F.D.: Encyclopedia of Chemical Technology, vol. 19, p. 851. Wiley, New York (1982)

    Google Scholar 

  13. Fine, L.W., Beall, H.: Chemistry for Engineers and Scientists. Saunders, Philadelphia (1990)

    Google Scholar 

  14. Upadhyay, A., Singh, A.K., Jain, A.K., Gupta, V.K., Bandi, K.R.: Potentiometric study of coated graphite electrode and polymeric membrane electrode for the determination of Sm3+ ion. Electroanalysis 24, 1630–1638 (2012)

    Article  CAS  Google Scholar 

  15. Rezaei, B., Askarpour, N., Hadadzadeh, H.: Experimental and semiempirical investigation of interaction between fast Sm membrane sensor and 1, 3-di(thiophene imino) benzoic acid. IEEE Sens. J. 11, 2077–2083 (2011)

    Article  CAS  Google Scholar 

  16. Agrahari, S.K., Srivastava, A.K.: Graphite electrode coated with a 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-multiwalled carbon nanotube composite as sensor for detection of samarium. Electroanalysis 23, 1531–1535 (2011)

    Article  CAS  Google Scholar 

  17. Naddaf, E., Zamani, H.A.: Samarium(III)-PVC-membrane sensor based on ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline. Anal. Lett. 42, 2838–2852 (2009)

    Article  CAS  Google Scholar 

  18. Zamani, H.A., Imani, A., Arvinfar, A., Rahimi, F., Ganjali, M.R., Faridbod, F., Meghdadi, S.: Neodymium(III)–PVC membrane sensor based on a new four dentate ionophore. Mater. Sci. Eng. C 31, 588–592 (2011)

    Article  CAS  Google Scholar 

  19. Faridbod, F., Ganjali, M.R., Larijani, B., Hosseini, M., Norouzi, P.: Ho3+ carbon paste sensor based on multi-walled carbon nanotubes: applied for determination of holmium content in biological and environmental samples. Mater. Sci. Eng. C 30, 555–560 (2010)

    Article  CAS  Google Scholar 

  20. Ganjali, M.R., Aghabalazadeh, S., Rezapour, M., Hosseini, M., Norouzi, P.: La3+ Carbon nanotube (CNT) based electrode using a new (1-[({2-[2-(2-hydroxy-1-naphtyl)-3-(2-{[(E)-1-(2-hydroxy-1-naphtyl)methylidene]amino}ethyl)-1-imidazolidinyl]ethyl}imino)methyl]-2-naphthol). Int. J. Electrochem. Sci. 5, 1743–1753 (2010)

    CAS  Google Scholar 

  21. Zamani, H.A., Rajabzadeh, G., Ganjali, M.R., Norouzi, P.: Determination of gadolinium(III) ions in soil and sediment samples by a novel gadolinium membrane sensor based on 6-methyl-4-{[1-(2-thienyl)methylidene]amino}3-thioxo-3,4-dihydro-1,2,4-triazin-5-(2H)-one. Anal. Chim. Acta 598, 51–57 (2007)

    Article  CAS  Google Scholar 

  22. Ganjali, M.R., Norouzi, P., Faridbod, F., Hajiabdollah, N., Dinarvand, R., Meghdadi, S.: Lutetium(III) ions determination in biological and environmental samples by a lutetium(III) sensor based on N, N0-bis (2-Pyridinecarboxamide)-1,3-benzene as a sensing material. Anal. Lett. 41, 3–23 (2008)

    Article  CAS  Google Scholar 

  23. Ganjali, M.R., Norouzi, P., Farrokhi, R., Faridbod, F., Larijani, B., Meghdadi, S.: Lanthanide recognition: determination of thulium(III) ions in presence of other rare earth elements by a thulium(III) sensor based on 4-methyl-1,2-bis (2-pyridinecarboxamido) benzene as a sensing material. Anal. Lett. 41, 2322–2343 (2008)

    Article  CAS  Google Scholar 

  24. Zamani, H.A., Ganjali, M.R., Seifi, N.: Dysprosium(III) ion-selective electrochemical sensor based on 6-Hydrazino-1,5-diphenyl-6,7-dihydropyrazolo[3,4-d]pyrimidine-4(5H)-imine. Collect. Czech. Chem. Commun. 72, 1189–1206 (2007)

    Article  CAS  Google Scholar 

  25. Ganjali, M.R., Norouzi, P., Ghorbani, H., Larijani, B., Tadjarodi, A., Hanifehpour, Y.: Lanthanide recognition: fabrication of an ytterbium PVC membrane sensor based on N-(6-picolyl)-N′-(4-metoxyphenyl) thiourea(PCMPT). Can. J. Anal. Sci. Spectros. 51, 279 (2006)

    CAS  Google Scholar 

  26. Behmadi, H., Zamani, H.A., Ganjali, M.R., Norouzi, P.: Determination of neodymium(III) ions in soil and sediment samples by a novel neodymium(III) sensor based on benzyl bisthiosemicarbazone. Electrochim. Acta 53, 1870–1876 (2007)

    Article  CAS  Google Scholar 

  27. Ganjali, M.R., Ahmadalinezhad, A., Norouzi, P., Adib, M.: Nd(III)-PVC membrane sensor based on 2-{[(6-aminopyridin-2-yl)imino]methyl}-phenol. J. Appl. Electrochem. 36, 931–936 (2006)

    Article  CAS  Google Scholar 

  28. Ganjali, M.R., Akbar, V., Ghorbani, M., Norouzi, P., Ahmadi, A.: Fluoride determination in some mouth wash preparations by a novel La(III) graphite coated membrane sensor based on amitraz. Anal. Chim. Acta 531, 185–191 (2005)

    Article  CAS  Google Scholar 

  29. Ganjali, M.R., Gholivand, M.B., Rahimi-Nasrabadi, M., Maddah, B., Salavati-Niasari, M., Ahmadi, F.: Synthesis of a new octadentates schiff’s base and its application in construction of a highly selective and sensitive lanthanum (III) membrane sensor. Sens. Lett. 4, 1–8 (2006)

    Article  Google Scholar 

  30. Ganjali, M.R., Norouzi, P., Alizadeh, T., Tajarodi, A., Hanifehpour, Y.: Fabrication of a highly selective and sensitive Gd(III)-PVC membrane sensor based on N-(2-pyridyl)-N′-(4-nitrophenyl)thiourea. Sens. Actuators B 120, 487–493 (2007)

    Article  CAS  Google Scholar 

  31. Ganjali, M.R., Norouzi, P., Daftari, A., Faridbod, F., Salavati-Niasari, M.: Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates Schiff’s base. Sens. Actuators B 120, 673–678 (2007)

    Article  CAS  Google Scholar 

  32. Ganjali, M.R., Faridbod, F., Norouzi, P., Adib, M.: A novel Er(III) sensor based on a new hydrazone for the monitoring of Er(III) ions. Sens. Actuators B 120, 119–124 (2006)

    Article  CAS  Google Scholar 

  33. Faridbod, F., Ganjali, M.R., Larijani, B., Norouzi, P.: Multi-walled carbon nanotubes (MWCNTs) and room temperature ionic liquids (RTILs) carbon paste Er(III) sensor based on a new derivative of dansyl chloride. Electrochim. Acta 55, 234–239 (2009)

    Article  CAS  Google Scholar 

  34. Ganjali, M.R., Davarkhah, N., Ganjali, H., Larijani, B., Norouzi, P., Hossieni, M.: A novel europium(III) sensor based on 4E-4-(2-phenylviazenyl)-2-((E)-(2-aminoethylimino)methyl)phenol. Int. J. Electrochem. Sci. 4, 762–771 (2009)

    CAS  Google Scholar 

  35. Shamsipur, M., Hosseini, M., Alizadeh, K., Talebpour, Z., Mousavi, M.F., Ganjali, M.R., Arca, M., Lippolis, V.: PVC membrane and coated graphite potentiometric sensors based on Et4todit for selective determination of samarium(III). Anal. Chem. 75, 5680–5686 (2003)

    Article  CAS  Google Scholar 

  36. Zamani, H.A., Arvinfar, A., Rahimi, F., Imani, A., Ganjali, M.R., Meghdadi, S.: Praseodymium analysis in aqueous solution by Pr3+–PVC membrane sensor based on N,N′-bis(4-hydroxysalicylidene)-1-3-phenylenediamine. Mater. Sci. Eng. C 31, 307–312 (2011)

    Article  CAS  Google Scholar 

  37. Ganjali, M.R., Memari, Z., Faridbod, F., Norouzi, R., Dinarvand, P.: Sm3+ potentiometric membrane sensor as a probe for determination of some pharmaceutics. Electroanalysis 20, 2663–2670 (2008)

    Article  CAS  Google Scholar 

  38. Ganjali, M.R., Tavakoli, M., Faridbod, F., Riahi, S., Norouzi, P., Salavati-Niassari, M.: Interaction study of a new bis-bidentate schiff’s base with some metal ions and its application in fabrication of Sm(III) potentiometric membrane sensor. Int. J. Electrochem. Sci. 3, 1559–1573 (2008)

    CAS  Google Scholar 

  39. Ganjali, M.R., Norouzi, P., Atrian, A., Faridbod, F., Meghdadi, S., Giahi, M.: Neutral N, N′-bis(2-pyridinecarboxamide)-1,2-ethane as sensing material for determination of lutetium(III) ions in biological and environmental samples. Mater. Sci. Eng. C 29, 205–210 (2009)

    Article  CAS  Google Scholar 

  40. Ganjali, M.R., Norouzi, P., Shamsolahrari, L., Ahmadi, A.: PPb level monitoring of lanthanium by a novel PCV-membrane sensor based on 4-methyl-2-hydrazinobenzothiazole. Sens. Actuators B 114, 713–719 (2006)

    Article  CAS  Google Scholar 

  41. Zamani, H.A., Ganjali, M.R., Faridbod, F.: A lutetium PVC membrane sensor based on (2-oxo-1,2–diphenylethylidene)-N-phenylhydrazinecarbothioamide. J. Serb. Chem. Soc. 76, 1295–1305 (2011)

    Article  CAS  Google Scholar 

  42. Hypercube Inc.: Hyperchem, v.7.5. Hypercube Inc. (2003) http://www.hyper.com

  43. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)

    Article  CAS  Google Scholar 

  44. Todeschini, R., Consonni, V., Mauri, A., Pavan, M.: DRAGON-Software for the calculation of molecular descriptors. Version 4.0 for Windows. Talete SRL, Milan (2004)

  45. Todeschini, R., Consonni, V., Mauri, A., Pavan, M.: Detecting “bad” regression models: multicriteria fitness functions in regression analysis. Anal. Chim. Acta 515, 199–208 (2004)

    Article  CAS  Google Scholar 

  46. Hammer, M.C., Steinhauer, V., Gasteiger, J.: Deriving the 3D structure of organic molecules from their infrared spectra. Vib. Spectrosc. 19, 151–164 (1999)

    Article  Google Scholar 

  47. Consonni, V., Todeschini, R., Pavan, M.: Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J. Chem. Inf. Comput. Sci. 42, 682–692 (2002)

    Article  CAS  Google Scholar 

  48. Consonni, V., Todeschini, R., Pavan, M., Gramatica, P.: Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J. Chem. Inf. Comput. Sci. 42, 693–705 (2002)

    Article  CAS  Google Scholar 

  49. Tropsha, A., Gramatica, P., Gombar, V.K.: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22, 69–77 (2003)

    Article  CAS  Google Scholar 

  50. Golbraikh, A., Tropsha, A.: Beware of q2! J. Mol. Graph. Model 20, 269–276 (2002)

    Article  CAS  Google Scholar 

  51. Netzeva, T.I., Worth, A.P., Aldenberg, T., Benigni, R., Cronin, M.T.D., Gramatica, P., Jaworska, J.S., Kahn, S., Klopman, G., Marchant, C.A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G.Y., Perkins, R., Roberts, D.W., Schultz, T.W., Stanton, D.T., van de Sandt, J.J.M., Tong, W., Veith, G., Yang, C.: Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships: the report and recommendations of ECVAM workshop 52. Altern. Lab. Anim. 33, 155–173 (2005)

    CAS  Google Scholar 

  52. Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T.D., McDowell, R.M., Gramatica, P.: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 111, 1361–1375 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ganjali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani-Anbouhi, R., Ganjali, M.R. & Norouzi, P. Application of QSPR for prediction of the complexation stabilities of Sm(III) with ionophores applied in lanthanoid sensors. J Incl Phenom Macrocycl Chem 81, 441–450 (2015). https://doi.org/10.1007/s10847-014-0472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0472-9

Keywords

Navigation