Skip to main content
Log in

Anomalous behaviour of the bis(benzimidazolium)butane [2]pseudorotaxanes of dibenzo-24-crown-8: a comparative study of methane, ethane, propane and butane bis(benzimidazolium)alkane]dibenzo-24-crown-8 systems with variable spacers

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Bis(benzimidazolium)butane (BBIM-butane) system acts as a new guest molecule for dibenzo-24-crown-8 (DB24C8). This is the only [BBIM]DB24C8 pseudorotaxanes where two conformers coexist (detected by 1H NMR and structure established by DFT studies); major conformer and minor conformer. Low temperature 1H NMR (240, 253 K) was done for a representative [BBIM-butane]DB24C8 pseudorotaxane that could not be detected at room-temperature. DFT calculations for this [BBIM-butane]DB24C8 pseudorotaxane were done both with B3LYP and MPW1PW91 functionals. The MPW1PW91 optimized structures identified possible stable major and minor conformer with the strongest H-bonding. We have compared the characteristics of [BBIM]DB24C8 [2]pseudorotaxanes comprising the [BBIM-methane]DB24C8, [BBIM-ethane]DB24C8, [BBIM-propane]DB24C8 and [BBIM-butane]DB24C8 systems. The feasibility of formation of these pseudorotaxanes decreases considerably from [BBIM-methane]DB24C8 to the [BBIM-butane]DB24C8 system. The presence of these threaded complexes was initially screened based on 1H NMR and substantiated further by 2D NMR spectroscopy (NOESY and COSY), X-ray crystallography, HR-ESI-MS and DFT calculations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Pseudorotaxanes have been defined in Ashton et al. [1] as the noninterlocked counterparts of rotaxanes, in which one or more linear “rods” or “threads” are encircled by one or more “wheels” or “beads” to form inclusion complexes. As distinct from rotaxanes, these supramolecular complexes are free to dissociate into their separate components since they do not possess bulky stopper groups.

  2. The term rotaxane derives from the Latin words rota and axis meaning wheel and axle, respectively, see Schill and Zollenkopf [2].

  3. The distinction between rotaxanes and pseudorotaxanes is far from being a straightforward one. For a more detailed discussion of the fuzziness that exists between rotaxanes and pseudorataxanes, see Ashton et al. [5].

References

  1. Ashton, P.R., Philp, D., Spencer, N., Stoddart, J.F.: The self-assembly of [n]pseudorotaxanes. J. Chem. Soc. Chem. Commun. 23, 1677–1679 (1991)

    Article  Google Scholar 

  2. Schill, G., Zollenkopf, H.: Rotaxan-Verbindungen, I. Liebigs Ann. Chem. 721, 53–74 (1969)

  3. Schill, G.: Catenanes, Rotaxanes and Knots. Academic Press, New York (1971)

    Google Scholar 

  4. Dietrich-Buckecher, C.O., Sauvage, J.P. (eds.): Catenanes, Rotaxanes and Knots. VCH-Wiley, Weinheim (1999)

  5. Ashton, P.R., Baxter, I., Fyfe, M.C.T., Raymo, F.M., Spencer, N., Stoddart, J.F., White, A.J.P., Williams, D.J.: Molecular meccano, Part 33. Rotaxane or pseudorotaxane. That is the question! J. Am. Chem. Soc. 120, 2297–2307 (1998)

    Article  CAS  Google Scholar 

  6. Ashton, P.R., Ballardini, R., Balzani, V., Belohradsky, M., Gandolfi, M.T., Philp, D., Prodi, L., Raymo, F.M., Reddington, M.V., Spencer, N., Stoddart, J.F., Venturi, M., Williams, D.J.: Molecular meccano 9. Self-assembly, spectroscopic and electrochemical properties of [n]rotaxanes. J. Am. Chem. Soc. 118, 4931–4951 (1996)

    Article  CAS  Google Scholar 

  7. Asakawa, M., Ashton, P.R., Ballardini, R., Balzani, V., Belohradsky, M., Gandolfi, M.T., Kocian, O., Prodi, L., Raymo, F.M., Stoddart, J.F., Venturi, M.: The slipping approach to self-assembling [n]rotaxane. J. Am. Chem. Soc. 119, 302–310 (1997)

    Article  CAS  Google Scholar 

  8. Avram, L., Cohen, Y.: Complexation in pseudorotaxanes based on alpha-cyclodextrin and different alpha, omega-diaminoalkanes by NMR diffusion measurements. J. Org. Chem. 67(8), 2639–2644 (2002)

    Article  CAS  Google Scholar 

  9. Bryant, W.S., Guzei, I.A., Rheingold, A.L., Gibson, H.W.: Unique ‘cradled barbell’ complex between a secondary diammonium ion and bis-m-phenylene-32-crown-10. Org. Lett. 1(1), 47–50 (1999)

    Article  CAS  Google Scholar 

  10. Hernandez, R., Tseng, H., Wong, J.W., Stoddart, J.F., Zink, J.I.: An operational supramolecular nanovalve. J. Am. Chem. Soc. 126, 3370–3371 (2004)

    Article  CAS  Google Scholar 

  11. Li, L., Clarkson, G.J.: New bis(benzimidazole) cations for threading through dibenzo-24-crown-8. Org. Lett. 9(3), 497–500 (2007)

    Article  CAS  Google Scholar 

  12. Castillo, D., Astudillo, P., Mares, J., González, F.J., Vela, A., Tiburcio, J.: Chemically controlled self-assembly of [2]pseudorotaxanes based on 1,2-bis(benzimidazolium)ethane cations and 24-crown-8 macrocycles. Org. Biomol. Chem. 5, 2252–2256 (2007)

    Article  CAS  Google Scholar 

  13. Share, A.I., Parimal, K., Flood, A.H.: Bi-lability is defined when one electron is used to switch between concerted and step-wise pathways in Cu(I)-based bi-stable [2/3]pseudorotaxanes. J. Am. Chem. Soc. 132, 1665–1675 (2010)

    Article  CAS  Google Scholar 

  14. Yang, H., Ghosh, K., Northrop, B.H., Zheng, Y., Lyndon, M.M., Muddiman, D.C., Stang, P.J.: A highly efficient approach to the self-assembly of hexagonal cavity-cored tris[2]pseudorotaxanes from several components via multiple noncovalent interactions. J. Am. Chem. Soc. 129, 14187–14189 (2007)

    Article  CAS  Google Scholar 

  15. Mukhopadhyay, C., Ghosh, S., Schmiedekamp, A.M.: Unraveling the molecular recognition of “three methylene spacer” bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study. Org. Biomol. Chem. 10, 1434–1439 (2012)

    Article  CAS  Google Scholar 

  16. Ghosh, S., Schmiedekamp, A.M., Mukhopadhyay, C.: Bis(benzimidazolium)methane salts: a potential guest for dibenzo-24-crown-8 towards [2]pseudorotaxanes. Tetrahedron 68, 9826–9835 (2012)

    Article  CAS  Google Scholar 

  17. Jones, J.W., Zakharov, L.N., Rheingold, A.L., Gibson, H.W.: Cooperative host/guest interactions via counterion assisted chelation: pseudorotaxanes from supramolecular cryptands. J. Am. Chem. Soc. 124, 13378–13379 (2002)

    Article  CAS  Google Scholar 

  18. Mukhopadhyay, C., Ghosh, S., Butcher, R.J.: An efficient and versatile synthesis of 2, 2′-(alkanediyl)-bis-1H-benzimidazoles employing aqueous fluoroboric acid as catalyst: density functional theory calculations and fluorescence studies. Arkivoc 9, 75–96 (2010)

    Article  Google Scholar 

  19. MacroModel: Copyright(c) Schrodinger, LLC (2009)

  20. Suite 2011: MacroModel, version 9.9, Schrödinger, LLC, New York (2011)

  21. Jaguar: version 7.6, Schrodinger, LLC, New York (2009)

  22. Pudzianowski, A.T.: A systematic appraisal of density functional methodologies for hydrogen bonding in binary ionic complexes. J. Phys. Chem. 100, 4781 (1996)

    Article  CAS  Google Scholar 

  23. Kaminiski, G.A., Maple, J.R., Murphy, R.B., Braden, D.A., Friesner, R.A.: Pseudospectral local second-order Møller–Plesset methods for computation of hydrogen bonding energies of molecular pairs. J. Chem. Theory Comput. 1, 248 (2005)

    Article  Google Scholar 

  24. Zhao, Y., Truhlar, D.G.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)

    Article  CAS  Google Scholar 

  25. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  Google Scholar 

  26. Kirchner, B., Spickermann, C., Reckien, W., Schalley, C.A.: Uncovering individual hydrogen bonds in rotaxanes by frequency shifts. J. Am. Chem. Soc. 132, 484–494 (2010)

    Article  CAS  Google Scholar 

  27. Silvi, S., Arduini, A., Pochini, A., Secchi, A., Tomasulo, M., Raymo, F.M., Baroncini, M., Credi, A.: A simple molecular machine operated by photoinduced proton transfer. J. Am. Chem. Soc. 129, 13378–13379 (2007)

    Article  CAS  Google Scholar 

  28. Jiang, W., Schäfer, A., Mohr, P.C., Schalley, C.A.: Monitoring self-sorting by electrospray ionization mass spectrometry: formation intermediates and error-correction during the self-assembly of multiply threaded pseudorotaxanes. J. Am. Chem. Soc. 132, 2309–2320 (2010)

    Article  CAS  Google Scholar 

  29. Jones, J.W., Gibson, H.W.: Ion pairing and host–guest complexation in low dielectric constant solvents. J. Am. Chem. Soc. 125, 7001–7004 (2003)

    Article  CAS  Google Scholar 

  30. Huang, F., Jones, J.W., Slebodnick, C., Gibson, H.W.: Ion pairing in fast-exchange host–guest systems: concentration dependence of apparent association constants for complexes of neutral hosts and divalent guest salts with monovalent counterions. J. Am. Chem. Soc. 125, 14458–14464 (2003)

    Article  CAS  Google Scholar 

  31. Gasa, T.B., Spruell, J.M., Dichtel, W.R., Sørensen, T.J., Philp, D., Stoddart, J.F., Kuzmic, P.: Complexation between methyl viologen (paraquat) bis(hexafluorophosphate) and dibenzo[24]crown-8 revisited. Chem. Eur. J. 15, 106–116 (2009)

    Article  CAS  Google Scholar 

  32. Gibson, H.W., Jones, J.W., Zakharov, L.N., Rheingold, A.L., Slebodnick, C.: Complexation equilibria involving salts in non-aqueous solvents: ion pairing and activity considerations. Chem. Eur. J. 17, 3192–3206 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (SG) thanks the University Grants Commission, New Delhi, for her fellowship (SRF). We thank Professor Amarendranath Patra of Department of Chemistry, University of Calcutta. We thank the CAS Instrumentation Facility, University of Calcutta for spectral data. The authors acknowledge computer use of the Lion-X series of computational clusters of the Research Computing and Cyber infrastructure group, a unit of Information Technology Services at Penn State University. Author (TC) acknowledges the infrastructural use of IBM-HS21 server cluster/LAN running parallel version with Linda of University of Burdwan. We also acknowledge grant received from UGC funded Major project, F. No. 37-398/2009 (SR) dated 11-01-2010. We also wish to thank Chembiotek, a TCG Lifesciences Enterprise for low temperature NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhanda Mukhopadhyay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Schmiedekamp, A.M., Padmanaban, E. et al. Anomalous behaviour of the bis(benzimidazolium)butane [2]pseudorotaxanes of dibenzo-24-crown-8: a comparative study of methane, ethane, propane and butane bis(benzimidazolium)alkane]dibenzo-24-crown-8 systems with variable spacers. J Incl Phenom Macrocycl Chem 81, 321–340 (2015). https://doi.org/10.1007/s10847-014-0459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0459-6

Keywords

Navigation