Skip to main content
Log in

Markov System with Self-Aligning Joint Constraint to Estimate Attitude and Joint Angles Between Two Consecutive Segments

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the development of a system to estimate the attitude (inclination and orientation) and joint angles between two consecutive segments of the human body, using only accelerometers and gyroscopes. A Markov approach is used where the jumps are chosen according to the type of observation carried out in the system, which can be: (a) based on both segments of the body (nominal), (b) based on the segment with the lowest dynamic acceleration index (local). In contrast to previous studies that use Markov systems with inertial sensors and encoders for absolute angular estimation in lower limb exoskeletons, this research expands the use of this type of system in devices and situations where the encoder is not present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghazali, N.F., Shahar, N., Rahmad, N.A., Sufri, N.A.J., As’ari, M.A., Latif, H.F.M.: Common sport activity recognition using inertial sensor. In: 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA), pp 67–71 (2018)

  2. Patterson, S.L., Forrester, L.W., Rodgers, M.M., Ryan, A.S., Ivey, F.M., Sorkin, J.D., Macko, R.F.: Determinants of walking function after stroke: Differences by deficit severity. Arch. Phys. Med. Rehabil. 88(1), 115–119 (2007). https://doi.org/10.1016/j.apmr.2006.10.025

    Article  Google Scholar 

  3. Bohannon, R.W., Andrews, A.W.: Normal walking speed: a descriptive meta-analysis. Physiotherapy 97(3), 182–189 (2011). https://doi.org/10.1016/j.physio.2010.12.004

    Article  Google Scholar 

  4. Ng, S.S., Hui-Chan, C.W.: The timed up & go test: Its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch. Phys. Med. Rehabil. 86(8), 1641–1647 (2005). https://doi.org/10.1016/j.apmr.2005.01.011

    Article  Google Scholar 

  5. Katz, S.: Studies of illness in the aged. JAMA 185(12), 914 (1963). https://doi.org/10.1001/jama.1963.03060120024016

    Article  Google Scholar 

  6. Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G.: Detection of daily physical activities using a triaxial accelerometer. Medical & Biological Engineering & Computing 41(3), 296–301 (2003). https://doi.org/10.1007/bf02348434

    Article  Google Scholar 

  7. Veltink, P.H., Bussmann, H.J., de Vries, W., Martens, W.J., Lummel, R.C.V.: Detection of static and dynamic activities using uniaxial accelerometers. IEEE Transactions on Rehabilitation Engineering 4 (4), 375–385 (1996). https://doi.org/10.1109/86.547939

    Article  Google Scholar 

  8. Altiok, H., Flanagan, A., Krzak, J.J., Hassani, S.: Quality of life, satisfaction with life, and functional mobility of young adults with arthrogryposis after leaving pediatric care. Am. J. Med. Genet. C: Semin. Med. Genet. 181(3), 461–468 (2019). https://doi.org/10.1002/ajmg.c.31717

    Article  Google Scholar 

  9. Bovonsunthonchai, S., Hiengkaew, V., Vachalathiti, R., Vongsirinavarat, M., Tretriluxana, J.: Effect of speed on the upper and contralateral lower limb coordination during gait in individuals with stroke. Kaohsiung J. Med. Sci. 28(12), 667–672 (2012). https://doi.org/10.1016/j.kjms.2012.04.036

    Article  Google Scholar 

  10. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8(3), 383–392 (1990). https://doi.org/10.1002/jor.1100080310

    Article  Google Scholar 

  11. da Silva, J.R.S.R.F.: Human motion reconstruction and based on body-worn sensors. mathesis, Faculdade de Engenharia Universidade do Porto - FEUP. https://repositorio-aberto.up.pt/bitstream/10216/116347/2/294712.pdf(2018)

  12. Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems 5(4), 320–329 (2011). https://doi.org/10.1109/TBCAS.2011.2160540

    Article  Google Scholar 

  13. Bouten, C.V.C., Koekkoek, K.T.M., Verduin, M., Kodde, R., Janssen, J.D.: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 44(3), 136–147 (1997). https://doi.org/10.1109/10.554760

    Article  Google Scholar 

  14. Luinge, H.J., Veltink, P.H.: Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Medical and Biological Engineering and Computing 43(2), 273–282 (2005). https://doi.org/10.1007/BF02345966

    Article  Google Scholar 

  15. Yi, C., Ma, J., Guo, H., Han, J., Gao, H., Jiang, F., Yang, C.: Estimating three-dimensional body orientation based on an improved complementary filter for human motion tracking. Sensors 18 (11), 3765 (2018). https://doi.org/10.3390/s18113765

    Article  Google Scholar 

  16. Lisini Baldi, T., Farina, F., Garulli, A., Giannitrapani, A., Prattichizzo, D.: Upper body pose estimation using wearable inertial sensors and multiplicative Kalman filter. IEEE Sensors J. 20(1), 492–500 (2020). https://doi.org/10.1109/JSEN.2019.2940612

    Article  Google Scholar 

  17. Liu, S., Zhang, J., Zhang, Y., Zhu, R.: A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun., 11. https://doi.org/10.1038/s41467-020-19424-2 (2020)

  18. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proceedings of the IEEE 86(8), 1640–1659 (1998). https://doi.org/10.1109/5.704269

    Article  Google Scholar 

  19. Sabatini, A.M.: Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Transactions on Biomedical Engineering 53(7), 1346–1356 (2006). https://doi.org/10.1109/tbme.2006.875664

    Article  Google Scholar 

  20. Li, C., Fernnandez-Steeger, T.M., Link, J.A.B., May, M., Azzam, R.: Use of MEMS accelerometers/inclinometers as a geotechnical monitoring method for ground subsidence. Acta Geodynamica et Geomaterialia 11(4), 337–349 (2014). https://doi.org/10.13168/AGG.2014.0015

    Article  Google Scholar 

  21. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  22. Del Rosario, M.B., Khamis, H., Ngo, P., Lovell, N.H., Redmond, S.J.: Computationally efficient adaptive error-state Kalman filter for attitude estimation. IEEE Sensors J. 18(22), 9332–9342 (2018). https://doi.org/10.1109/JSEN.2018.2864989

    Article  Google Scholar 

  23. Razavi, H., Salarieh, H., Alasty, A.: Inertial motion capture accuracy improvement by kalman smoothing and dynamic networks. IEEE Sensors J. 21(3), 3722–3729 (2021). https://doi.org/10.1109/JSEN.2020.3024874

    Article  Google Scholar 

  24. Nogueira, S.L., Lambrecht, S., Inoue, R.S., Bortole, M., Montagnoli, A.N., Moreno, J.C., Rocon, E., Terra, M.H., Siqueira, A.A.G., Pons, J.L.: Global Kalman filter approaches to estimate absolute angles of lower limb segments. BioMedical Engineering OnLine, 16(1). https://doi.org/10.1186/s12938-017-0346-7 (2017)

  25. Inoue, R.S., Guizilini, V., Terra, M.H., Ramos, F.: Markovian jump linear systems-based filtering for visual and GPS aided inertial navigation system. In: IEEE International Conference on Intelligent Robots and Systems, pp 4083–4089 (2017)

  26. Nogueira, S., Siqueira, A., Inoue, R., Terra, M.: Markov jump linear systems-based position estimation for lower limb exoskeletons. Sensors 14(1), 1835–1849 (2014). https://doi.org/10.3390/s140101835

    Article  Google Scholar 

  27. Albuquerque, P.R., Francelino, E.H., Nogueira, S.L.: Orientação espacial em exoesqueletos de membros inferiores utilizando filtros Markovianos. In: 2021 14th IEEE International Conference on Industry Applications (INDUSCON), pp 862–867. IEEE, São Paulo, Brazil (2021)

  28. Seel, T., Raisch, J., Schauer, T.: IMU-based joint angle measurement for gait analysis. Sensors (Switzerland) 14(4), 6891–6909 (2014). https://doi.org/10.3390/s140406891

  29. Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints (Dubrovnik, Croatia, 2012)

  30. Watanabe,T.,Saito,H.,Koike,E.,Nitta,K.:Apreliminarytestofmeasurementofjointanglesand stridelengthwithwirelessinertialsensorsforwearablegaitevaluationsystem.Comput.Intell.Neurosci. 2011, 1–12(2011).https://doi.org/10.1155/2011/975193

    Article  Google Scholar 

  31. Weygers,I.,Kok,M.,DeVroey,H.,Verbeerst,T.,Versteyhe,M.,Hallez,H.,Claeys,K.: Drift-freeinertialsensor-basedjointkinematicsforlong-termarbitrarymovements.IEEESensorsJ. 20 (14), 7969–7979(2020).https://doi.org/10.1109/JSEN.2020.2982459

    Google Scholar 

  32. Bortole,M.,Venkatakrishnan,A.,Zhu,F.,Moreno,J.C.,Francisco,G.E.,Pons,J.L.,Contreras-Vidal, J.L.:TheH2roboticexoskeletonforgaitrehabilitationafterstroke:earlyfindingsfromaclinicalstudy.Journalof NeuroEngineeringandRehabilitation,12(1). https://doi.org/10.1186/s12984-015-0048-y(2015)

  33. Lambrecht,S.,Nogueira,S.,Bortole,M.,Siqueira,A.,Terra,M.,Rocon,E.,Pons,J.: Inertialsensorerrorreductionthroughcalibrationandsensorfusion.Sensors 16(2), 235(2016). https://doi.org/10.3390/s16020235

    Article  Google Scholar 

Download references

Funding

This work was carried out with funding from the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Project 88882.441241/2019-01 and the São Paulo Research Foundation - Brazil (FAPESP), process 2020/13936-8.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, and design. Coding, filtering design, and data processing were performed by M.Sc. Edson Francelino, Mr. Mateus Pereira, and Professor Samuel Nogueira. The first draft of the manuscript was written by M.Sc. Edson Francelino and all authors have assisted in editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Edson Francelino.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francelino, E., Pereira, M., Inoue, R. et al. Markov System with Self-Aligning Joint Constraint to Estimate Attitude and Joint Angles Between Two Consecutive Segments. J Intell Robot Syst 104, 43 (2022). https://doi.org/10.1007/s10846-022-01572-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01572-w

Keywords

Navigation