Skip to main content
Log in

A Robot Architecture for Outdoor Competitions

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic competitions and involving several sets of skills. We present a modular architecture to integrate different components for path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ) approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible approach to testing different configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy. Int. J. Robot. Res. 17(4), 315–337 (1998)

    Article  Google Scholar 

  2. Allmendinger, F., Eddine, S.C., Corves, B.: Coordinate-invariant rigid-body interpolation on a parametric c1 dual quaternion curve. Mech. Mach. Theory 121, 731–744 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.11.023

    Article  Google Scholar 

  3. Atsuzawa, K., Nilwong, S., Hossain, D., Kaneko, S., Capi, G.: Robot navigation in outdoor environments using odometry and convolutional neural network. In: IEEJ international workshop on sensing, actuation, motion control, and optimization (SAMCON) (2019)

  4. Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp, C., Reinholtz, C., Hong, D., Wicks, A., Alberi, T., Anderson, D., et al.: Odin: Team victortango’s entry in the DARPA urban challenge. J. Field Robot. 25(8), 467–492 (2008)

    Article  Google Scholar 

  5. Baklouti, E., Amor, N.B., Jallouli, M.: Reactive control architecture for mobile robot autonomous navigation. Robot. Auton. Syst. 89, 9–14 (2017)

    Article  Google Scholar 

  6. Bar-Shalom, Y., Campo, L.: The effect of the common process noise on the two-sensor fused-track covariance. IEEE Trans. Aerosp. Electron. Syst. AES-22(6), 803–805 (1986). https://doi.org/10.1109/TAES.1986.310815

    Article  Google Scholar 

  7. Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)

    Article  Google Scholar 

  8. Bauchspiess, R.: Sistema de visão para rastreamento de objetos alvo para robô móvel. Undergraduate thesis, Universidade de Brasília, Brasilia, Brazil. http://bdm.unb.br/handle/10483/36 (2017)

  9. Black, H.D.: A passive system for determining the attitude of a satellite. AIAA J. 2, 1350–1351 (1964)

    Article  Google Scholar 

  10. Borges, G.A.: Um sistema Óptico de reconhecimento de trajetórias para veículos automáticos. Universidade Federal da Paraíba, Master’s thesis (1998)

    Google Scholar 

  11. Borges, G.A., Lima, A.M., Deep, G.S.: Design of an output feedback trajectory controller for an automated guided vehicle. In: XIII Congresso Brasileiro de Automática (2000)

  12. Breuer, T., Macedo, G.R.G., Hartanto, R., Hochgeschwender, N., Holz, D., Hegger, F., Jin, Z., Müller, C., Paulus, J., Reckhaus, M., et al.: Johnny: An autonomous service robot for domestic environments. J. Intell. Robot. Syst. 66(1-2), 245–272 (2012)

    Article  Google Scholar 

  13. de Brito, C.G.: Desenvolvimento de um sistema de localização para robôs móveis baseado em filtragem bayesiana não-linear. Undergraduate thesis, Universidade de Brasília, Brasilia, Brazil. http://bdm.unb.br/handle/10483/19285 (2017)

  14. Bó, A.P.L.: Desenvolvimento de um sistema de localizacão 3d para aplicacão em robôs aéreos. Master’s thesis, Universidade de Brasilia, Brasilia Brazil (2007)

  15. Cacitti, A., Zapata, R.: Reactive behaviours of mobile manipulators based on the dvz approach. In: IEEE International conference on robotics and automation, 2001. Proceedings 2001 ICRA, vol. 1, pp. 680–685. IEEE (2001)

  16. Chavez, J.R.M.: Zona virtual deformável com filtro de partículas no rastreamento de obstáculos em robótica móvel. Mestrado em sistemas mecatrônicos, Universidade de Brasília (2014)

    Google Scholar 

  17. Chenavier, F., Crowley, J.L.: Position estimation for a mobile robot using vision and odometry. In: Proceedings 1992 IEEE international conference on robotics and automation, pp. 2588–2593, vol.3 (1992)

  18. Crassidis, J.L.: Sigma-point Kalman filtering for integrated GPS and inertial navigation. IEEE Trans. Aerosp. Electron. Syst. 42(2), 750–756 (2006)

    Article  Google Scholar 

  19. Cristóforis, P.D., Nitsche, M., Krajník, T., Pire, T., Mejail, M.: Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments. Pattern Recogn. Lett. 53, 118–128 (2015). https://doi.org/10.1016/j.patrec.2014.10.010. http://www.sciencedirect.com/science/article/pii/S0167865514003274

    Article  Google Scholar 

  20. Faisal, M., Hedjar, R., Sulaiman, M.A., Al-Mutib, K.: Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. Int. J. Adv. Robot. Syst. 10(1), 37 (2013). https://doi.org/10.5772/54427

    Article  Google Scholar 

  21. Fiack, L., Cuperlier, N., Miramond, B.: Embedded and real-time architecture for bio-inspired vision-based robot navigation. J. Real-Time Image Proc. 10(4), 699–722 (2015)

    Article  Google Scholar 

  22. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation 16(5) (2000)

  23. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  24. Gustafsson, F., Hendeby, G.: Some Relations Between Extended and Unscented Kalman Filters. IEEE Trans. Signal Process. 60(2), 545–555 (2012). https://doi.org/10.1109/TSP.2011.2172431

    Article  MathSciNet  Google Scholar 

  25. Haralick, R.M., Shapiro, L.G.: Image segmentation techniches. Computer vision, graphics and image processing (1985)

  26. Huan-cheng, Z., Miao-liang, Z.: Self-organized architecture for outdoor mobile robot navigation. Journal of Zhejiang University-SCIENCE A 6(6), 583–590 (2005)

    Article  Google Scholar 

  27. Hunt, R.W.G., Pointer, M.R.: Measuring Colour, fourth edn. John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ England (2011)

  28. Iagnemma, K., Buehler, M.: Editorial for journal of field robotics—special issue on the DARPA grand challenge. J. Field Robot. 23(9), 655–656 (2006)

    Article  Google Scholar 

  29. Jwo, D.J., Weng, T.P.: An adaptive sensor fusion method with applications in integrated navigation. J. Navig. 61(4), 705–721 (2008). https://doi.org/10.1017/S0373463308004827

    Article  Google Scholar 

  30. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30 (7), 846–894 (2011)

    Article  Google Scholar 

  31. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Iowa State University, Tech. rep. (1998)

    Google Scholar 

  32. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(3), 376–382 (1991)

    Article  Google Scholar 

  33. Luo, R.: Multi sensor integration and fusion in intelligent systems. IEEE Trans. Syst. Man Cybern. 19(5), 901–931 (1989). https://doi.org/10.1109/21.44007

    Article  Google Scholar 

  34. Menegaz, H.M.T., Ishihara, J.Y., Borges, G.A., Vargas, A.N.: A systematization of the unscented Kalmansry. IEEE Trans. Autom. Control 60(10), 2583–2598 (2015)

    Article  Google Scholar 

  35. Meng, W., Liu, E., Han, S.: A novel collaborative navigation architecture based on decentralized and distributed ad-hoc networks. In: 2012 IEEE international conference on communications (ICC), pp. 606–610. IEEE (2012)

  36. Mutambara, A.G.: Decentralized estimation and control for multisensor systems. CRC Press, Boca Rato (1998)

    MATH  Google Scholar 

  37. de Oliveira, R.W.S.M.: Uma arquitetura de navegação para robôs móveis. Undergraduate thesis. Universidade de Brasília, Brasilia (2017). http://bdm.unb.br/handle/10483/19224

    Google Scholar 

  38. Porto, L.H.S.: Controle de movimento de um robô não-holonômico com tração diferencial. Undergraduate thesis. Universidade de Brasília, Brasilia (2017). http://bdm.unb.br/handle/10483/19239

    Google Scholar 

  39. Schiffer, S., Ferrein, A., Lakemeyer, G.: Caesar: an intelligent domestic service robot. Intell. Serv. Robot. 5(4), 259–273 (2012)

    Article  Google Scholar 

  40. Silva Porto, L.H., Werberich da Silva Moreira de Oliveira, R., Bauchspiess, R., Brito, C., da Cruz Figueredo, L.F., Araujo Borges, G., Novaes Ramos, G.: An autonomous mobile robot architecture for outdoor competitions. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp. 141–146. https://doi.org/10.1109/LARS/SBR/WRE.2018.00034 (2018)

  41. Stentz, A.: Optimal and efficient path planning for partially known environments. In: Intelligent unmanned ground vehicles, pp. 203–220. Springer (1997)

  42. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al.: Stanley: The robot that won the DARPA Grand Challenge. J. Field Robot. 23(9), 661–692 (2006)

    Article  Google Scholar 

  43. Valls, M.d.l.I., Hendrikx, H.F.C., Reijgwart, V., Meier, F.V., Sa, I., Dubé, R., Gawel, A.R., Bürki, M., Siegwart, R.: Design of an autonomous racecar: Perception, state estimation and system integration. arXiv:1804.03252 (2018)

  44. Valls, M.I., Hendrikx, H.F.C., Reijgwart, V.J.F., Meier, F.V., Sa, I., Dubé, R., Gawel, A., Bürki, M., Siegwart, R.: Design of an autonomous racecar: Perception, state estimation and system integration. In: 2018 IEEE international conference on robotics and automation (ICRA), pp. 2048–2055. https://doi.org/10.1109/ICRA.2018.8462829 (2018)

  45. Ziegler, J., Werling, M., Schroder, J.: Navigating car-like robots in unstructured environments using an obstacle sensitive cost function. In: 2008 IEEE intelligent vehicles symposium, pp. 787–791. https://doi.org/10.1109/IVS.2008.4621302 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo W. S. M. de Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.W.S.M., Bauchspiess, R., Porto, L.H.S. et al. A Robot Architecture for Outdoor Competitions. J Intell Robot Syst 99, 629–646 (2020). https://doi.org/10.1007/s10846-019-01140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01140-9

Keywords

Navigation