Skip to main content
Log in

Realtime Active Sound Source Localization for Unmanned Ground Robots Using a Self-Rotational Bi-Microphone Array

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work presents a novel technique that performs both orientation and distance localization of a sound source in a three-dimensional (3D) space using only the interaural time difference (ITD) cue, generated by a newly-developed self-rotational bi-microphone robotic platform. The system dynamics is established in the spherical coordinate frame using a state-space model. The observability analysis of the state-space model shows that the system is unobservable when the sound source is placed with elevation angles of 90 and 0 degree. The proposed method utilizes the difference between the azimuth estimates resulting from respectively the 3D and the two-dimensional models to check the zero-degree-elevation condition and further estimates the elevation angle using a polynomial curve fitting approach. Also, the proposed method is capable of detecting a 90-degree elevation by extracting the zero-ITD signal ’buried’ in noise. Additionally, a distance localization is performed by first rotating the microphone array to face toward the sound source and then shifting the microphone perpendicular to the source-robot vector by a predefined distance of a fixed number of steps. The integrated rotational and translational motions of the microphone array provide a complete orientation and distance localization using only the ITD cue. A novel robotic platform using a self-rotational bi-microphone array was also developed for unmanned ground robots performing sound source localization. The proposed technique was first tested in simulation and was then verified on the newly-developed robotic platform. Experimental data collected by the microphones installed on a KEMAR dummy head were also used to test the proposed technique. All results show the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Organization for Standardization (ISO), British, European and International Standards (BSEN), Noise emitted by machinery and equipment – Rules for the drafting and presentation of a noise test code. 12001: 1997 Acoustics

  2. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979). https://doi.org/10.1121/1.382599

    Article  Google Scholar 

  3. Beard, R., McLain, T.: Small unmanned aircraft: Theory and practice. Princeton University Press, Princeton (2012)

  4. Benesty, J., Chen, J., Huang, Y.: Microphone array signal processing, vol. 1 Springer Science & Business Media. https://doi.org/10.1007/978-3-540-78612-2 (2008)

  5. Beranek, L.L., Mellow, T.J.: Acoustics: sound fields and transducers. Academic Press (2012)

  6. Blumrich, R., Altmann, J.: Medium-range localisation of aircraft via triangulation. Appl. Acoust. 61(1), 65–82 (2000). https://doi.org/10.1016/S0003-682X(99)00066-3

    Article  Google Scholar 

  7. Boll, S.: Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 27(2), 113–120 (1979). https://doi.org/10.1109/TASSP.1979.1163209

    Article  Google Scholar 

  8. Boll, S., Pulsipher, D.: Suppression of acoustic noise in speech using two microphone adaptive noise cancellation. IEEE Trans. Acoust. Speech Signal Process. 28(6), 752–753 (1980). https://doi.org/10.1109/TASSP.1980.1163472

    Article  Google Scholar 

  9. Borenstein, J., Everett, H., Feng, L.: Navigating mobile robots: systems and techniques. A K Peters Ltd (1996)

  10. Brandes, T.S., Benson, R.H.: Sound source imaging of low-flying airborne targets with an acoustic camera array. Appl. Acoust. 68(7), 752–765 (2007). https://doi.org/10.1016/j.apacoust.2006.04.009

    Article  Google Scholar 

  11. Brandstein, M., Ward, D.: Microphone arrays: signal processing techniques and applications. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-04619-7 (2013)

  12. Brassington, G.: Mean absolute error and root mean square error: which is the better metric for assessing model performance?. In: EGU General Assembly Conference Abstracts, vol. 19, p. 3574 (2017)

  13. Calmes, L.: Biologically inspired binaural sound source localization and tracking for mobile robots. RWTH Aachen University, Ph.D. thesis (2009)

    Google Scholar 

  14. Chen, J., Benesty, J., Huang, Y.: Time delay estimation in room acoustic environments: an overview. EURASIP Journal on applied signal processing, pp. 170–170. https://doi.org/10.1155/ASP/2006/26 (2006)

  15. Donohue, K.D.: Audio array toolbox. [Online] Available: http://vis.uky.edu/distributed-audio-lab/about/, 2017, Dec 22

  16. Gala, D., Lindsay, N., Sun, L.: Three-dimensional sound source localization for unmanned ground vehicles with a self-rotational two-microphone array. In: Proceedings of the 5th international conference of control, dynamic systems, and robotics (CDSR’18), pp. 104-1–104-11 (2018). https://doi.org/10.11159/cdsr18.104

  17. Gala, D.R., Misra, V.M.: SNR improvement with speech enhancement techniques. In: Proceedings of the international conference and workshop on emerging trends in technology, ICWET ’11, pp. 163–166. ACM. https://doi.org/10.1145/1980022.1980058 (2011)

  18. Gala, D.R., Vasoya, A., Misra, V.M.: Speech enhancement combining spectral subtraction and beamforming techniques for microphone array. In: Proceedings of the international conference and workshop on emerging trends in technology, ICWET ’10, pp. 163–166. https://doi.org/10.1145/1741906.1741938 (2010)

  19. Gill, D., Troyansky, L., Nelken, I.: Auditory localization using direction-dependent spectral information. Neurocomputing 32, 767–773 (2000). https://doi.org/10.1016/S0925-2312(00)00242-3

    Article  Google Scholar 

  20. Goelzer, B., Hansen, C.H., Sehrndt, G.: Occupational exposure to noise: evaluation, prevention and control. World Health Organisation (2001)

  21. Goldstein, E.B., Brockmole, J.: Sensation and perception. Cengage Learning (2016)

  22. Hedrick, J.K., Girard, A.: Control of nonlinear dynamic systems: Theory and applications. Controllability and observability of Nonlinear Systems, pp. 48 (2005)

  23. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5), 728–740 (1977). https://doi.org/10.1109/TAC.1977.1101601

    Article  MathSciNet  MATH  Google Scholar 

  24. Hornstein, J., Lopes, M., Santos-Victor, J., Lacerda, F.: Sound localization for humanoid robots-building audio-motor maps based on the HRTF. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 1170–1176. https://doi.org/10.1109/IROS.2006.281849 (2006)

  25. Huang, Y., Benesty, J., Elko, G.W.: Passive acoustic source localization for video camera steering. In: IEEE international conference on acoustics, speech, and signal processing, vol. 2, pp. II909–II912. https://doi.org/10.1109/ICASSP.2000.859108 (2000)

  26. Kaushik, B., Nance, D., Ahuja, K.: A review of the role of acoustic sensors in the modern battlefield. In: 11th AIAA/CEAS Aeroacoustics Conference. https://doi.org/10.2514/6.2005-2997 (2005)

  27. Keyrouz, F.: Advanced binaural sound localization in 3-D for humanoid robots. IEEE Trans. Instrum. Meas. 63(9), 2098–2107 (2014). https://doi.org/10.1109/TIM.2014.2308051

    Article  Google Scholar 

  28. Keyrouz, F., Diepold, K.: An enhanced binaural 3D sound localization algorithm. In: IEEE international symposium on signal processing and information technology, pp. 662–665. https://doi.org/10.1109/ISSPIT.2006.270883 (2006)

  29. Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust Speech Signal Process 24 (4), 320–327 (1976). https://doi.org/10.1109/TASSP.1976.1162830

    Article  Google Scholar 

  30. Kumon, M., Uozumi, S.: Binaural localization for a mobile sound source. J. Biomed. Sci. Eng. 6(1), 26–39 (2011). https://doi.org/10.1299/jbse.6.26

    Google Scholar 

  31. Laurent Kneip, C.B.: Binaural model for artificial spatial sound localization based on interaural time delays and movements of the interauralaxis. J. Acoust. Soc. Am. 3108–3119. https://doi.org/10.1121/1.2977746 (2008)

  32. Lu, Y.C., Cooke, M.: Motion strategies for binaural localisation of speech sources in azimuth and distance by artificial listeners. Speech Comm. 53(5), 622–642 (2011). https://doi.org/10.1016/j.specom.2010.06.001

    Article  Google Scholar 

  33. Lu, Y.C., Cooke, M., Christensen, H.: Active binaural distance estimation for dynamic sources. In: INTERSPEECH, pp. 574–577 (2007)

  34. Middlebrooks, J.C., Green, D.M.: Sound localization by human listeners. Annu. Rev. Psychol. 42(1), 135–159 (1991). https://doi.org/10.1146/annurev.ps.42.020191.001031

    Article  Google Scholar 

  35. Naylor, P., Gaubitch, N.D.: Speech dereverberation Springer Science & Business Media. https://doi.org/10.1007/978-1-84996-056-4 (2010)

  36. Nguyen, Q.V., Colas, F., Vincent, E., Charpillet, F.: Long-term robot motion planning for active sound source localization with Monte Carlo tree search. In: Hands-free speech communications and microphone arrays (HSCMA), pp. 61–65. https://doi.org/10.1109/HSCMA.2017.7895562 (2017)

  37. Omologo, M., Svaizer, P.: Acoustic source location in noisy and reverberant environment using csp analysis. In: IEEE international conference on acoustics, speech, and signal processing conference, vol. 2, pp. 921–924. https://doi.org/10.1109/ICASSP.1996.543272 (1996)

  38. Pang, C., Liu, H., Zhang, J., Li, X.: Binaural sound localization based on reverberation weighting and generalized parametric mapping. IEEE/ACM Trans Audio Speech, Language Process 25(8), 1618–1632 (2017). https://doi.org/10.1109/TASLP.2017.2703650

    Article  Google Scholar 

  39. Perrett, S., Noble, W.: The effect of head rotations on vertical plane sound localization. J. Acoust. Soc. Am. 102(4), 2325–2332 (1997). https://doi.org/10.1121/1.419642

    Article  Google Scholar 

  40. Rodemann, T.: A study on distance estimation in binaural sound localization. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 425–430. https://doi.org/10.1109/IROS.2010.5651455 (2010)

  41. Rodemann, T., Ince, G., Joublin, F., Goerick, C.: Using binaural and spectral cues for azimuth and elevation localization. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2185–2190. https://doi.org/10.1109/IROS.2008.4650667 (2008)

  42. Sabine, W.: Collected papers on acoustics. Harvard University Press (1922)

  43. Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., Moonen, M., Van Dijk, B., Van Wieringen, A., Wouters, J.: Speech understanding in background noise with the two-microphone adaptive beamformer beam in the nucleus freedom cochlear implant system. Ear and Hearing 28(1), 62–72 (2007). https://doi.org/10.1097/01.aud.0000252470.54246.54

    Article  Google Scholar 

  44. Sturim, D.E., Brandstein, M.S., Silverman, H.F.: Tracking multiple talkers using microphone-array measurements. In: IEEE international conference on acoustics, speech, and signal processing, vol. 1, pp. 371–374 vol.1. https://doi.org/10.1109/ICASSP.1997.599650 (1997)

  45. Sun, L., Zhong, X., Yost, W.: Dynamic binaural sound source localization with interaural time difference cues: Artificial listeners. J. Acoust. Soc. Am. 137(4), 2226–2226 (2015). https://doi.org/10.1121/1.4920636

    Article  Google Scholar 

  46. Tamai, Y., Kagami, S., Amemiya, Y., Sasaki, Y., Mizoguchi, H., Takano, T.: Circular microphone array for robot’s audition. In: Proceedings of IEEE sensors, 2004., vol. 2, pp. 565–570. https://doi.org/10.1109/ICSENS.2004.1426228 (2004)

  47. Tamai, Y., Sasaki, Y., Kagami, S., Mizoguchi, H.: Three ring microphone array for 3D sound localization and separation for mobile robot audition. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4172–4177. https://doi.org/10.1109/IROS.2005.1545095 (2005)

  48. Tiete, J., Domínguez, F., Silva, B.D., Segers, L., Steenhaut, K., Touhafi, A.: Soundcompass: a distributed MEMS microphone array-based sensor for sound source localization. Sensors 14(2), 1918–1949 (2014). https://doi.org/10.3390/s140201918

    Article  Google Scholar 

  49. Valin, J.M., Michaud, F., Rouat, J., Letourneau, D.: Robust sound source localization using a microphone array on a mobile robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), vol. 2, pp. 1228–1233. https://doi.org/10.1109/IROS.2003.1248813 (2003)

  50. Wallach, H.: On sound localization. J. Acoust. Soc. Am. 10(4), 270–274 (1939). https://doi.org/10.1121/1.1915985

    Article  Google Scholar 

  51. Wang, H., Chu, P.: Voice source localization for automatic camera pointing system in videoconferencing. In: IEEE international conference on acoustics, speech, and signal processing, vol. 1, pp. 187–190. https://doi.org/10.1109/ICASSP.1997.599595 (1997)

  52. Wang, L., Hon, T.K., Reiss, J.D., Cavallaro, A.: An iterative approach to source counting and localization using two distant microphones. IEEE/ACM Trans Audio Speech, Language Process 24(6), 1079–1093 (2016). https://doi.org/10.1109/TASLP.2016.2533859

    Article  Google Scholar 

  53. Yost, W.A., Zhong, X.: Sound source localization identification accuracy: Bandwidth dependencies. J. Acoust. Soc. Am. 136(5), 2737–2746 (2014). https://doi.org/10.1121/1.4898045

    Article  Google Scholar 

  54. Zhong, X., Sun, L., Yost, W.: Active binaural localization of multiple sound sources. Robot. Auton. Syst. 85, 83–92 (2016). https://doi.org/10.1016/j.robot.2016.07.008

    Article  Google Scholar 

  55. Zhong, X., Yost, W., Sun, L.: Dynamic binaural sound source localization with ITD cues: Human listeners. J. Acoust. Soc. Am. 137(4), 2376–2376 (2015). https://doi.org/10.1121/1.4920636

    Article  Google Scholar 

  56. Zietlow, T., Hussein, H., Kowerko, D.: Acoustic source localization in home environments-the effect of microphone array geometry. In: 28th conference on electronic speech signal processing, pp. 219–226 (2017)

Download references

Acknowledgments

The authors would like to thank Dr. Xuan Zhong for providing with the experimental raw data using the KEMAR dummy head.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Gala.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gala, D., Lindsay, N. & Sun, L. Realtime Active Sound Source Localization for Unmanned Ground Robots Using a Self-Rotational Bi-Microphone Array. J Intell Robot Syst 95, 935–954 (2019). https://doi.org/10.1007/s10846-018-0908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0908-3

Keywords

Navigation