Skip to main content
Log in

Hierarchical Variable Structure Control for the Path Following and Formation Maintenance of Multi-agent Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a hierarchical variable structure control (HVSC) is proposed for path following and formation maintenance of multi-agent systems (MAS) based on the one leader and one follower (1L-1F) configuration. In terms of the leader, the path following of a nonholonomic mobile robot (NMR) can be regarded as tracking of a virtual reference NMR. Then, a feedback control law is used to attain path following based on kinematics of the NMR. Subsequently, a variable structure controller (VSC) with known upper bound of the disturbances is designed to achieve velocity control based on the dynamics of the NMR. Furthermore, as far as the formation maintenance is concerned, a method of feedback linearization is utilized to exponentially stabilize the relative distance and orientation between the leader and follower. Similarly, a VSC is also designed for complete velocity control such that the aforementioned formation is maintained. The proposed method with hierarchical structure simultaneously attains the path following of the leader and maintains the formation for the MAS. In addition, the robustness of the proposed scheme is guaranteed in spite of persistent disturbances and the stability analysis of the closed-loop system is proved via Lyapunov stability criteria. Finally, computer simulations are conducted to validate the feasibility and effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwon, J.W., Chwa, D.: Hierarchical formation control based on a vector field method for wheeled mobile robots. IEEE Trans. Robot. 28(6), 1335–1345 (2012)

    Article  Google Scholar 

  2. Karimoddini, A., Lin, H.: Hierarchical hybrid symbolic robot motion planning and control. Asian J. Control 17(2), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  4. Hsu, H.C.-H., Liu, A.: Multiagent-based multi-team formation control for mobile robots. J. Intell. Robot. Syst. 42(4), 337–360 (2005)

    Article  Google Scholar 

  5. Zhang, Q., Lapierre, L., Xiang, X.: Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles. IEEE Trans. Ind. Inf. 9(1), 472–484 (2013)

    Article  Google Scholar 

  6. Rezaee, H., Abdollahi, F.: A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans. Ind. Electron. 61(1), 347–354 (2014)

    Article  Google Scholar 

  7. Vela, P., Betser, A., Malcolm, J., Tannenbaum, A.: Vision-based range regulation of a leader-follower formation. IEEE Trans. Control Syst. Technol. 17(2), 442–448 (2009)

    Article  Google Scholar 

  8. Chen, X., Jia, Y.: Adaptive leader-follower formation control of non-holonomic mobile robots using active vision. IET Control Theory Appl. 9(8), 1302–1311 (2015)

    Article  MathSciNet  Google Scholar 

  9. Wu, H.M., Karkoub, M., Hwang, C.L.: Mixed fuzzy sliding-mode tracking with backstepping formation control for multi-nonholomic mobile robots subject to uncertainties. J. Intell. Robot. Syst. 42(4), 337–360 (2005)

    Article  Google Scholar 

  10. Kamel, A.M., Yu, X., Zhang, Y.: Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Trans. Control Syst. Technol. 26(2), 756–764 (2018)

    Article  Google Scholar 

  11. Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formation. IEEE Trans. Syst. Man Cybern. Part B 40(2), 383–399 (2010)

    Article  Google Scholar 

  12. Dierks, T., Brenner, B., Jagannathan, S.: Neural network-based optimal control of mobile robot formations with reduced information exchange. IEEE Trans. Control Syst. Technol. 21(4), 1407–1415 (2013)

    Article  Google Scholar 

  13. Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Trans. Ind. Electron. 55(11), 3944–3953 (2008)

    Article  Google Scholar 

  14. Mariottini, G.L., Morbidi, F., Prattichizzo, D., Vander Valk, N., Michael, N., Pappas, G., Daniilidis, K.: Vision-based localization for leader-follower formation control. IEEE Trans. Robot. 25(6), 1431–1438 (2009)

    Article  Google Scholar 

  15. Wang, H., Guo, D., Liang, X., Chen, W., Hu, G., Leang, K.K.: Adaptive vision-based leader-follower formation control of mobile robots. IEEE Trans. Ind. Electron. 64(4), 2893–2902 (2017)

    Article  Google Scholar 

  16. Aranda, M., Lopez-Nicolas, G., Sagues, C., Mezouar, Y.: Formation control of mobile robots using multiple aerial cameras. IEEE Trans. Robot. 31(4), 1064–1071 (2015)

    Article  Google Scholar 

  17. Chang, Y.H., Chang, C.W., Chen, C.L., Tao, C.W.: Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE Trans. Syst. Man Cybern. Part B 42(2), 444–457 (2012)

    Article  Google Scholar 

  18. Liang, X., Liu, Y.H., Wang, H., Chen, W., Xing, K., Liu, T.: Leader-following formation tracking control of mobile robots without direct position measurements. IEEE Trans. Autom. Control 64(4), 4131–4137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ranjbar-Sahraei, B., Shabaninia, F., Nemati, A., Stan, S.: A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems. IEEE Trans. Ind. Electron. 59(8), 3124–3134 (2012)

    Article  Google Scholar 

  20. Wang, Z., Li, S., Fei, S.: Finite-time tracking control of a nonholonomic mobile robot. Asian J. Control 11(3), 344–357 (2009)

    Article  MathSciNet  Google Scholar 

  21. Matraji, I., Laghrouche, S., Jemei, S., Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)

    Article  Google Scholar 

  22. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  23. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robot. Syst. 14(3), 149–163 (1997)

    Article  MATH  Google Scholar 

  24. Egerstedt, M., Hu, X., Stotsky, A.: Control of mobile platforms using a virtual vehicle approach. IEEE Trans. Autom. Control 46(11), 1777–1782 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cupertino, F., Naso, D., Mininno, E., Turchiano, B.: Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors. IEEE Trans. Ind. Appl. 45(5), 1688–1696 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiu-Ming Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: (The proof of Theorem 1)

Appendix: (The proof of Theorem 1)

The Lyapunov function \(V={\sigma _{n}^{T}} \sigma _{n} /2>0\) as ∥σn∥ ≠ 0 is defined. Taking its time derivative with substitution of Eqs. 8 and 23 with \(k_{f_{n} } >\max \| \bar {{M}}_{n}^{-1} \bar {{\tau }}_{d_{n} } \| \) yields the following result:

$$\begin{array}{@{}rcl@{}} \dot{{V}}&=&{\sigma_{n}^{T}} \dot{{\sigma }}_{n} \\ &=&{\sigma_{n}^{T}} [C_{n} (\dot{{V}}_{d_{n} } -\dot{{V}}_{n} )] \\ &=&{\sigma_{n}^{T}} \{C_{n} [\dot{{V}}_{d_{n} } -\bar{{M}}_{n}^{-1} (\bar{{B}}_{n} \tau_{n} -\bar{{H}}_{n} V_{n} -\bar{{G}}_{n} -\bar{{\tau }}_{d_{n} } )]\} \\ &=&-\lambda_{n} \| \sigma_{n} \|^{2}-(\varepsilon_{n} +k_{f_{n} } )\| \sigma_{n} \|^{2}/(\| \sigma_{n} \| +\sigma_{n_{b} } )+{\sigma_{n}^{T}} \bar{{M}}_{n}^{-1} \bar{{\tau }}_{d_{n} } \\ &\le& -\lambda_{n} \| \sigma_{n} \|^{2}-(\varepsilon_{n} +k_{f_{n} } )\| \sigma_{n} \|^{2}/(\| \sigma_{n} \| +\sigma_{n_{b} })\\ &&+\| \bar{{M}}_{n}^{-1} \bar{{\tau }}_{d_{n} } \| \,\| \sigma_{n} \| \\ &=&\frac{\| \sigma_{n} \| }{(\| \sigma_{n} \| +\sigma_{n_{b} } )}[-\lambda_{n} \| \sigma_{n} \| (\| \sigma_{n} \| +\sigma_{n_{b} } )-(\varepsilon_{n} +k_{f_{n} } )\| \sigma_{n} \|\\ &&+\| \bar{{M}}_{n}^{-1} \bar{{\tau }}_{d_{n} } \| (\| \sigma_{n} \| +\sigma_{n_{b} } )] \\ &\le& \frac{-\| \sigma_{n} \| }{(\| \sigma_{n} \| +\sigma_{n_{b} } )}[\lambda_{n} \| \sigma_{n} \|^{2}+(\lambda_{n} \sigma_{n_{b} } +\varepsilon_{n} )\| \sigma_{n} \| -k_{f_{n} } \sigma_{n_{b} } ] \\ &=&\frac{-\| \sigma_{n} \| }{(\| \sigma_{n} \| +\sigma_{n_{b} } )}v_{\sigma } (\| \sigma_{n} \| ) \end{array} $$

where vσ(∥σn∥) = vσ2σn2 + vσ1σn∥− vσ0, with vσ2, vσ1 and vσ0 described in Eq. 23c. As ∥σn∥ > sσ, the inequality vσ(∥σn∥) ≥ 0 is satisfied. Thus, outside of the domain Dσ in Eq. 23 making \(\dot {{V}}\le 0\) is obtained. According to the Lyapunov stability criteria, the sliding surface σn exponentially converges into the domain Dσ. Then, once the operating point reaches the stable sliding surface \(\sigma _{n} ,E_{V_{n} } \to 0\) as \(t\to \infty \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HM., Karkoub, M. Hierarchical Variable Structure Control for the Path Following and Formation Maintenance of Multi-agent Systems. J Intell Robot Syst 95, 267–277 (2019). https://doi.org/10.1007/s10846-018-0886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0886-5

Keywords

Navigation