Skip to main content
Log in

Dead-Reckoning Scheme for Wheeled Mobile Robots Moving on Curved Surfaces

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper improves the conventional dead reckoning for a wheeled mobile robot moving on curved surfaces. Dead reckoning has been very popularly used for the estimation of mobile robot positions, as it uses a very simple algorithm and is very easy to implement in industrial mobile robots moving on a flat plain. Such mobile robots are being more widely applied for complex industrial tasks, including the inspections and maintenance of oil tanks, ship bodies, power plant components, and so on. Most of this type of equipment is composed of curved surfaces, such as those with cylindrical, spherical, or arbitrary shapes. For the successful accomplishment of such tasks on curved surfaces, the robot has to know its current position and travel on the curved surfaces of the equipment along a pre-specified path. In this paper, the authors propose an extended dead-reckoning scheme for wheeled mobile robots moving on a curved plane, and illustrate a formula with examples for spherical and cylindrical surfaces. The performance of the proposed algorithm is analyzed through a series of simulations and experiments using a magnet-wheeled mobile robot developed in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myer, J.: VEPOL-A Vehicular planimetric dead-reckoning computer. IEEE Trans. Veh. Technol. 20(2) (1971)

  2. Brockelman, C.: Robotic inspection system for the lower head of a boiling water reactor pressure vessel. In: Proceedings of the ANS 5th Topical Meeting on Robotics and Remote Systems, pp. 409–415. Tennessee (1993)

  3. Yuta, S, Kanayama, Y, Yajima, T, Shimmura, S.: An implementation of MICHI-A locomotion command system for intelligent robots. In: Proceedings Int’l Conference on Advanced Robotics, pp. 127–134. Tokyo (1985)

  4. Kim, J.H., Cho, H.S.: An improved dead reckoning scheme for a mobile robot using neural network. MECHATRONICS 3(5), 625–645 (1993)

    Article  Google Scholar 

  5. Hardt, H., Husson, A.: The dead-reckoning localization system of the wheeled mobile robot ROMANE. In; IEEE/SICE/RSJ International Conference on Multi-Sensor Fusion and Integration for Intelligent System, pp. 603–610 (1996)

  6. Tsumura, T., Fuziwara, N., Shirakawa, T., Hashimoto, M.: An experimental system for automatic guidance of roboted vehicle following the route stored in memory. In: 11th Int’l Symposium on Industrial Robots, pp. 45–53. Tokyo (1981)

  7. Fuke, Y., Krotkov, E.: Dead reckoning for a lunar rover on uneven terrain. In: IEEE International Conference on Robotics and Automation, pp. 411–416. Minneapolis (1996)

  8. Anounsaki, G., Kyriakopoulos, K.: A dead-reckoning scheme for skid-steered vehicles in outdoor environments. In: IEEE international Conference on Robotics and Automation. New Orleans (2004)

  9. Huster, A., Fleischer, S., Rock, S.: Demonstration of a vision-based dead-reckoning system for navigation of an underwater vehicle. In: Autonomous Underwater Vehicle AUV98, pp. 185–189. Cambridge (1998)

  10. Golfarelli, M., Maio, D., Rizzi, S.: Correction of dead-reckoning errors in map building for mobile robots. IEEE Trans. Robot. Autom. 17(1), 37–47 (2001)

    Article  Google Scholar 

  11. Tsai, C.: A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurement. IEEE Trans. Instrum. Meas. 47(5), 1399–1404 (1998)

    Article  Google Scholar 

  12. Kim, J., Cho, H.: Real-time determination of a mobile robot’s position by linear scanning of a landmark. ROBOTICA 10(4), 309–319 (1992)

    Article  MathSciNet  Google Scholar 

  13. Cho, S., Choi, W.: Robust positioning technique in low-cost DR/GPS for land navigation. IEEE Trans. Instrum. Meas. 44(4), 1132–1142 (2006)

    Article  Google Scholar 

  14. Kreyszig, E: Advanced Engineering Mathematics, Wiley International Edition. Wiley, New York (1972)

    Google Scholar 

  15. Kim J.: Dead reckoning of an underwater wheeled mobile robot, Available: http://www.youtube.com/watch?v=FUIS25yuNQ4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Lee, JC. Dead-Reckoning Scheme for Wheeled Mobile Robots Moving on Curved Surfaces. J Intell Robot Syst 79, 211–220 (2015). https://doi.org/10.1007/s10846-014-0058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0058-1

Keywords

Navigation