Skip to main content

Advertisement

Log in

Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Bees ensure 35 % of global food production, but this service is endangered due to several threats. Declines in bumblebee populations (genus Bombus) have been reported worldwide. Bombus bellicosus is one of the rare cases of reported threatened bumblebees in South America. It was once widespread in southern Brazil’s grasslands until the 1960s. During that time, that area underwent increasing land use which led to a decrease in bee abundance and richness, and to local disappearance of B. bellicosus. Climate change is also believed to cause declines in the abundance of B. bellicosus. Here we used species distribution models to assess potential effects of climate changes on the distribution of B. bellicosus in southern Brazil, considering both current and future climate scenarios. Our results show that the suitable climatic conditions for B. bellicosus will retreat southwards. A wax cover inside its nests is usually related to Bombus species inhabiting cooler climates. This cover enables the maintenance of higher temperatures inside the nest and may be deleterious for the species under future warmer climates. Continuously growing land use is the second major threat to this pollinator. The results presented here may eventually provide theoretical grounds and enable practical conservation actions for B. bellicosus protection in South America, especially given the potential adverse effects of climate changes for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamovich AH, Díaz NB, Morrone JJ (2004) Distributional patterns of the Neotropical and andean species of the genus Bombus (Hymenoptera: Apidae). Acta Zool Mex 20:99–117

    Google Scholar 

  • Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918

    Article  CAS  PubMed  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Arbulo N, Santos E, Salvarrey S, Invernizzi C (2011) Proboscis length and resource utilization in two uruguayan bumblebees: Bombus atratus Franklin and Bombus bellicosus (Hymenoptera: Apidae). Neotrop Entomol 40:72–77

    Article  CAS  PubMed  Google Scholar 

  • Ascher JS, Pickering J (2014) Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species

  • Banaszak-Cibicka W, Żmihorski M (2011) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner D et al (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–206459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartomeus I, Ascher JS, Gibbs J et al (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci USA 110:4656–4660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bommarco R, Lundin O, Smith HG et al (2012) Drastic historic shifts in bumble-bee community composition in Sweden. Proc R Soc B Biol Sci 279:309–315

    Article  Google Scholar 

  • Bridle JR, Vines TH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147

    Article  PubMed  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662

    Article  Google Scholar 

  • Chown SL, Terblanche JS (2006) Physiological diversity in insects: ecological and evolutionary contexts. Adv In Insect Phys 33:50–152

    Article  PubMed Central  PubMed  Google Scholar 

  • Colla SR, Gadallah F, Richardson L et al (2012) Assessing declines of North American bumble bees Bombus spp. using museum specimens. Biodivers Conserv 21:3585–3595

    Article  Google Scholar 

  • Colombo AF, Joly CA (2010) Brazilian Atlantic forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708

    Article  CAS  PubMed  Google Scholar 

  • Diniz-Filho AF, Bini LM, Rangel TF et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Diniz-Filho JAF, De Marco Jr P, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179

    Google Scholar 

  • Durant JM, Hjermann DØ, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283

    Article  Google Scholar 

  • Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386

  • Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modelling with special emphasis on the Mahalanobis distance. Ecol Modell 160:115–130

    Article  CAS  Google Scholar 

  • Ferro VG, Lemes P, Melo AS, Loyola R (2014) The reduced effectiveness of protected areas under climate change threatens atlantic forest tiger moths. PLoS One 9:e107792. doi:10.1371/journal.pone.0107792

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitzpatrick U, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V, Brown MJF (2006) Rarity and decline in bumblebees – A test of causes and correlates in the Irish fauna. Biol Conserv 136:1–10

  • Garratt MPD, Coston DJ, Truslove CL et al (2014) The identity of crop pollinators helps target conservation for improved ecosystem services. Biol Conserv 169:128–135

    Article  PubMed Central  PubMed  Google Scholar 

  • Giannini TC, Acosta AL, Garófalo CA et al (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Modell 244:127–131

    Article  Google Scholar 

  • Google Inc. (2013) Google Earth. version 7.0.3.8542

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

    Article  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  CAS  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed Central  PubMed  Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138

    Article  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A et al (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Herrera JM, Ploquin EF, Rodríguez-Pérez J, Obeso JR (2014) Determining habitat suitability for bumblebees in a mountain system: a baseline approach for testing the impact of climate change on the occurrence and abundance of species. J Biogeogr 41:700–712

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hines HM, Cameron SA, Deans AR (2007) Nest architecture and foraging behavior in Bombus pullatus (Hymenoptera: Apidae), with comparisons to other tropical bumble bees. J Kans Entomol Soc 80:1–15

    Article  Google Scholar 

  • Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J et al (2011) Use of niche models in invasive species risk assessments. Biol Invasion 13:2785–2797

    Article  Google Scholar 

  • Kamino LHY, Stehmann JR, Amaral S et al (2011) Challenges and perspectives for species distribution modelling in the neotropics. Biol Lett 8:324–326

    Article  PubMed Central  PubMed  Google Scholar 

  • Kearney M (2006) Habitat, environment and niche: What are we modelling? Oikos 1115:186–191

    Article  Google Scholar 

  • Klatt BK, Holzschuh A, Westphal C et al (2014) Bee pollination improves crop quality, shelf life and commercial value. Proc R Soc B Biol Sci 281:20132440

  • Klein A-M, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc B Biol Sci 270:955–961

    Article  Google Scholar 

  • Kremen C, Williams NM, Aizen MA et al (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  PubMed  Google Scholar 

  • Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS One 8:e54323. doi:10.1371/journal.pone.0054323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Loyola RD, Lemes P, Faleiro FV et al (2012) Severe loss of suitable climatic conditions for marsupial species in Brazil: challenges and opportunities for conservation. PLoS One 7: e46257. doi:10.1371/journal.pone.0046257

    PubMed Central  PubMed  Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Martins AC, Melo GAR (2009) Has the bumblebee Bombus bellicosus gone extinct in the northern portion of its distribution range in Brazil? J Insect Conserv 14:207–210

    Article  Google Scholar 

  • Martins AC, Gonçalves RB, Melo GAR (2013) Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia 30:157–176

    Article  Google Scholar 

  • MEA. (2005) Millenium Ecosystem Assessment. Ecosystems and Human well-being: Scenarios - Millenium Ecosystem Assessment—Drivers of Ecosystem Change, vol 1. Island Press, Washington, DC, pp 74–76

  • Michener CD (2007) The Bees of the World, 2nd ed. : p 992

  • Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534

    Article  Google Scholar 

  • Moure JS, Sakagami SF (1962) As mamangabas sociais do Brasil (Bombus, Latreille) (Hymenoptera, Apoidea). Stud Entomol 5:65–194

    Google Scholar 

  • Muñoz MES, De Giovanni R, de Siqueira MF et al (2011) openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15:111–135

    Article  Google Scholar 

  • Nóbrega CC, De Marco P Jr (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505

    Article  Google Scholar 

  • Overbeck G, Muller S, Fidelis A et al (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9:101–116

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Polak M, Tomkins JL (2013) Developmental selection against developmental instability: a direct demonstration. Biol Lett 9:20121081

    Article  PubMed Central  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126

    Article  Google Scholar 

  • Rocchini D, Hortal J, Lengyel S et al (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226

    Article  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

  • Sakagami SF, Laroca S (1971) Relative abundance, phenology and flower visits of apid bees in eastern Paraná, Southern Brazil (Hymenoptera, Apidae). Kontyû 39:217–230

    Google Scholar 

  • Sakagami SF, Akahira Y, Zucchi R (1967a) Nest architeture and brood development in a neotropical bumblebee, Bombus atratus. Insectes Soc 14:389–413

    Article  Google Scholar 

  • Sakagami SF, Laroca S, Moure JS (1967b) Wild bee biocenotics in São José dos Pinhais (PR), South Brazil, Preliminary Report. J Fac Sci Hokkaido Univ Ser VI, Zool 16:253–291

    Google Scholar 

  • Saraiva AM, Acosta AL, Giannini TC et al (2013) Bombus terrestris na América do Sul: possíveis rotas de invasão deste polinizador exótico até o Brasil. polinizadores do bras contrib e perspect para biodiversidade, uso sustentável, conserv e serviços ambient

  • Schölkopf B, Platt JC, Shawe-Taylor J et al (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    Article  PubMed  Google Scholar 

  • Schweiger O, Heikkinen RK, Harpke A et al (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob Ecol Biogeogr 21:88–99

    Article  Google Scholar 

  • Serra BDV, De Marco PJ, Nóbrega CC, Campos LAO (2012) Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, Apidae): conserving isolated populations in mountain habitats. Nat Conserv 10:199–206

    Article  Google Scholar 

  • Silva DP, Aguiar AJC, Melo GAR et al (2013) Amazonian species within the cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie 44:673–683

    Article  Google Scholar 

  • Silva DP, Gonzalez VH, Melo GAR et al (2014) Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Modell 273:200–209

    Article  Google Scholar 

  • Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652

    Article  PubMed  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13

    Article  Google Scholar 

  • Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Article  Google Scholar 

  • Thompson HM (2001) Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32:305–321

    Article  CAS  Google Scholar 

  • Thomson D (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458–470

    Article  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473

    Article  CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Varela G (1992a) Nota preliminar sobre la fenologia del nido de Bombus bellicosus Smith, 1879 (Hymenoptera, Apoidea). Bol Soc Zool Uruguay 7:53–54

    Google Scholar 

  • Varela G (1992b) Nota preliminar sobre los componentes de un nido de Bombus bellicosus Smith, 1879 (Hymenoptera, Apoidea). Bol Soc Zool Uruguay 7:55–56

    Google Scholar 

  • Walther G, Post E, Convey P et al (2002) Ecological responses to recent climatic change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387

    Article  Google Scholar 

  • Williams PH, Araújo MB, Rasmont P (2007) Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Conserv 138:493–505

    Article  Google Scholar 

  • Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol 23:931–940

    Article  PubMed  Google Scholar 

  • Williams NM, Crone EE, Roulston T et al (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291

    Article  Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  PubMed  Google Scholar 

  • Winfree R, Aguilar R, Vásquez DP et al (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • WWF (2013) Tropical and subtropical grasslands, savannas and shrublands: Southeastern South America: Uruguay, Brazil, and Argentina. http://worldwildlife.org/ecoregions/nt0710. Accessed 4 Feb 2013

Download references

Acknowledgments

ACM would like to thank all the researchers who made their Entomological Collections open-access online and provided several of the B. bellicosus occurrences used here. ACM would also like to thank the curators Betina Blochtein (PUC-RS) and Maria H. Galileo (Fundação Zoobotânica-RS) for allowing the exam of their collections and Rafael Kamke who personally examined B. bellicosus specimens in the bee collection of UFSC. We would like to thank Sara Lodi, Solana Boschilia, Victor Gonzalez, and two anonymous reviewers for critical comments on the manuscript. ACM and DPS received doctorate fellowships from CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (148685/2010-2 and 147204/2010-0, respectively). PDMJ and GARM have been continuously supported by grants from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.C., Silva, D.P., De Marco, P. et al. Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J Insect Conserv 19, 33–43 (2015). https://doi.org/10.1007/s10841-014-9740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9740-7

Keywords

Navigation