Skip to main content

Advertisement

Log in

Climate Simulations: Uncertain Projections for an Uncertain World

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

Between the fourth and the recent fifth IPCC report, science as well as policy making have made great advances in dealing with uncertainties in global climate models. However, the uncertainties public decision making has to deal with go well beyond what is currently addressed by policy makers and climatologists alike. It is shown in this paper that within an anthropocentric framework, a whole hierarchy of models from various scientific disciplines is needed for political decisions as regards climate change. Via what is sometimes referred to as ‘uncertainty cascade’ in the technical literature, the uncertainties of various models accumulate in the input to political decision making. This paper aims to chart the uncertainties in the multi-disciplinary enterprise of current climate modeling in broad strokes. It is shown that the uncertainty cascade makes it impossible to quantify uncertainties in the form of probability estimates. Moreover the paper highlights how global climate models fail to provide probability estimates. A better treatment of the uncertainties of climate predictions on the political level would require an overhaul of the current IPCC practice that separates the various scientific fields in various working groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. There have been various attempts recently to better address conceptualization uncertainties (e.g. Moss and Schneider 2000), but these all remain rather fragmentary.

References

  • Benestad, R. E., Hanssen-Baur, I., & Chen, D. (2008). Empirical-statistical downscaling. Singapore: World Scientific Publishing.

    Book  Google Scholar 

  • Betz, G. (2009). Underdetermination, model-ensembles and surprises—on the epistemology of scenario-analysis in climatology. Journal for General Philosophy of Science, 40, 3–21.

    Article  Google Scholar 

  • Biddle, J., & Winsberg, E. (2010). Value judgements and the estimation of uncertainty in climate modeling. In P. D. Magnus & J. Busch (Eds.), New waves in philosophy of science. New York: Palgrave Macmillan.

    Google Scholar 

  • Castles, I., & Henderson, D. (2003). Economics, emission scenarios and the work of the IPCC. Energy and Environment, 14(4), 415–435.

    Article  Google Scholar 

  • Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A.. Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W. T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A., & Whetton, P. (2007). Regional climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Hg.) (Eds.), Climate change 2007: The scientific basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Churchman, C. W. (1948). Theory of experimental inference. New York: Macmillan.

    Google Scholar 

  • Churchman, C. W. (1956). Science and decision making. Philosophy of Science, 22, 247–249.

    Article  Google Scholar 

  • Collins, M. (2007). Ensembles and Probabilities: A New Era in the Prediction of Climate Change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 1957–1970. doi: 10.1098/rsta.2007.2068

  • Douglas, H. (2000). Inductive risk and values in science. Philosophy of Science, 67, 559–579.

    Article  Google Scholar 

  • Frisch, M. (2013). Modeling climate policies: A critical look at integrated assessment models. Philosophy of Technology, 26, 117–137.

  • Giere, R. N. (1988). Explaining science. A cognitive approach. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008). Performance metrics for climate models. Journal of Geophysical Research: Atmospheres, 113(D6).http://onlinelibrary.wiley.com/doi/10.1029/2007JD008972/full.

  • Grübler, A., et al. (2004). Emission scenarios: A final response. Energy and Environment, 15, 11–24.

    Article  Google Scholar 

  • Hannart, A., Ghil, M., Dufresne, J. L., & Naveau, P. (2013). Disconcerting learning on climate sensitivity and the uncertain future of uncertainty. Climatic Change, 119(3–4), 585–601.

    Article  Google Scholar 

  • Hillerbrand, R., & Ghil, M. (2008). Anthopogenic climate change: Scientific uncertainties and moral dilemmas. Physica D, 237, 2132–2138.

    Article  Google Scholar 

  • Hillerbrand, R. (2010). On non-propositional aspects in modelling complex systems. Analyse und Kritik, 32, 107–120.

    Google Scholar 

  • Hillerbrand, R., & Schneider, C. (2013). Unwissenschaftlich weil unsicher? Unsicher weil wissenschaftlich! Szenarien, Modelle und Projektionen in den Klimawissenschaften. In S. Jeschke, E.-M. Jakobs, & A. Dröge (Eds.), Exploring uncertainty (pp. 151–177). Berlin: Springer.

  • Holtsmark, B., & Alfsen, K. (2005). PPP Correction of the IPCC Emission Scenarios: Does It Matter?. Climatic Change, 68(1–2), 11–19.

  • Katzav, J. (2013). Severe testing of climate change hypotheses. Studies in History and Philosophy of Modern Physics, 44(4), 433–441.

    Article  Google Scholar 

  • Maslin, M., & Austin, P. (2012). Climate models at their limit? Nature, 486, 184.

    Article  Google Scholar 

  • Mayo, D. (1983). An objective theory of statistical testing. Synthese, 57, 297–340.

    Article  Google Scholar 

  • Mayo, D. (1996). Error and the growth of experimental knowledge. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Meinshausen, M., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241.

    Article  Google Scholar 

  • Morgan, M. S., & Morrison, M. (Eds.). (1999). Models as mediators. Perspectives on natural and social science. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Morrison, M. (2009). Models, measurement and computer simulation: The changing face of experimentation. Philosophical Studies, 143, 33–57.

    Article  Google Scholar 

  • Moss, R. H., & Schneider, S. H. (2000). Uncertainties in the IPCC TAR: Recommendation to lead authors for more consistent assessment and reporting. In R. Pachauri, T. Taniguchi, & T. Tanaka (Eds.), Third assessment report. Geneva: Cross Cutting Issues Guidance Papers.

    Google Scholar 

  • Nakicenovic, N., Davidson, O., Davis, G., Grubler, A., Kram, T., Lebre La Rovere, E., Metz, B., Morita, T., Pepper, W., Pitcher, H., Sankovski, A., Shukla, P., Swart, R., Watson, R., Dadi, Z. (2000). IPCC Special Report: Emission Scenarios–Summary for Policymakers. http://www.ipcc.ch/pdf/special-reports/spm/sresen.pdf.

  • Nordhaus, W. (2008). A question of balance. Weighing the options on global warming policies. Yale: Yale University Press.

    Google Scholar 

  • Norton, S. D. & Suppe, F. (2001). “Why atmospheric modeling is good science” in Changing the atmosphere: Expert knowledge and environmental governances. In C. Miller & P. N. Edwards (Eds.) (pp. 67–105). Cambridge: MIT press.

  • Oreskes, N., Stainforth, D. A., & Smith, L. A. (2010). Adaptation to global warming: Do climate models tell us what we need to know? Philosophy of Science, 77, 1012–1028.

    Article  Google Scholar 

  • Parker, W. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169(3), 483–496.

    Article  Google Scholar 

  • Parker, W. (2010). Predicting weather and climate: Uncertainty, ensembles and probability. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(3), 263–272.

    Article  Google Scholar 

  • Polanyi, M. (1958). Personal knowledge: Towards a post-critical philosophy. Chicago: University of Chicago Press.

    Google Scholar 

  • Pope, S. B. (2001). Turbulent flows. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Poznic, M. (2013). Misrepresentation, similarity, and indirect modeling. Presentation at OZSW Conference, November 2013, Rotterdam, NL, (pp. 15–16).

  • Reiss, J. (2013). Philosophy of economics. A contemporary introduction. London: Routledge.

    Google Scholar 

  • Roundtree, A. K. (2010). The rhetoric of computer simulations in astrophysics: A case study. Journal of Science Communication, 9, A02.

    Google Scholar 

  • Rudner, R. (1953). The scientist qua scientist makes value judgments. Philosophy of Science, 20(1), 1–6.

    Article  Google Scholar 

  • Sauter, T., Weitzenkamp, B., & Schneider, C. (2010). Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network. International Journal of Climatology, 30(15), 2330–2341. doi:10.1002/joc.2043.

    Article  Google Scholar 

  • Smith, L. A., & Petersen, A. (2014). Variations on reliability: Connecting climate predictions to climate policy. In M. Boumans, A. Petersen, G. Hon (Eds.), Error and uncertainty in scientific practice. History and philosophy of technoscience (1) (pp. 137–156). London, UK: Pickering and Chatto Publishers. ISBN 9781848934160.

  • Solomon, S. et al. (Hg.) (2007). Climate change 2007: The scientific basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, MA: Cambridge University Press.

  • Spash, C. (2002). Greenhouse economics: Value and ethics. London: Routledge.

    Book  Google Scholar 

  • Stern, N. (2007). The economics of climate change. In The stern review. Cambridge, MA: Cambridge University Press.

  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K., Boschung, J., et al. (2013). Climate Change 2013: The physical science basis. Working group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.

  • Sundberg, M. (2011). The dynamics of coordinated comparisons: How simulationists in astrophysics, oceanography and meteorology create standards for results. Social Studies of Science, 41, 107.

    Article  Google Scholar 

  • Suppes, P. (1962). Models of data. In Proceedings of the 1960 international congress of logic methodology and philosophy of science. http://suppes-corpus.stanford.edu/articles/mpm/41.

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: an overview. In: Climatic Change. doi: 10.1007/s10584-011-0148-z.

  • Winsberg, E. (2013). Computer simulations in science. In E. N. Zalta (Ed.) The Stanford Encyclopedia of Philosophy (Summer 2013 Edition). http://plato.stanford.edu/archives/sum2013/entries/simulations-science/.

  • Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70, 105–125.

    Article  Google Scholar 

  • Winsberg, E. (2012). Values and uncertainties in the predictions of global climate models. Kennedy Institute of Ethics Journal, 22(2), 111–137.

    Article  Google Scholar 

  • Wittgenstein, L. (2001). Philosophical investigations. Oxford: Blackwell Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaela Hillerbrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillerbrand, R. Climate Simulations: Uncertain Projections for an Uncertain World. J Gen Philos Sci 45 (Suppl 1), 17–32 (2014). https://doi.org/10.1007/s10838-014-9266-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-014-9266-4

Keywords

Navigation