Skip to main content

Climate Models, Projections, and Scenarios

  • Chapter
  • First Online:
Climate Change in the Himalayas
  • 753 Accesses

Abstract

This chapter presents a brief introduction to the complex but very important subject of climate modeling without going into the details of mathematical formulations and hierarchy of currently available models and their results. Models are numerical representations of the climate system based on physical, chemical, and biological properties of their components which provide future projections on global as well as regional scales. To generate acceptable future climate projections, it is essential that many plausible scenarios of greenhouse gases are designed taking into account alternate pathways of development strategy likely to be adopted by the human societies. These alternate options may have their representative concentrations of greenhouse gases and other external forcing functions. Therefore, the chapters have a very important section on emission scenarios which presents a summary of sets of alternate scenarios suggested by the scientific groups under the IPCC guidelines. Since the authenticity of the model projections is a function of the initial scenario, the chapter describes the entirely family of IPCC emission scenarios extensively used by various modeling groups. To model the large-scale circulation features and other physical parameters on global scale, the models are built on a closed system involving the entire Earth system known as General Circulation Models. For the projection of climate of a smaller subregion the models are designed over a smaller region taking into account the local factors using the boundary conditions generated by the GCMs. These can be further down scaled to represent much smaller regions. In view of the importance of regional climate, some description is provided with examples of regional climate model (RCM) experiments and the merits and demerits of global versus the regional climate models are pointed out. Lastly, the chapter provides a summary of recent studies relating to the model generated climate scenarios of the future over the Asian monsoon region. Some results of a case study for western Himalayan region are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashrit RG, Douville H, Rupa Kumar K (2003) Response of the Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J Meteorol Soc Jpn 81:779–803

    Article  Google Scholar 

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn. doi:10.1007/s00382-005-0097-1

  • Bell JL, Sloan LC, Snyder MA (2004) Regional changes in extreme climatic events: a future climate scenario. J Clim 17(1):81–87

    Article  Google Scholar 

  • Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979-1993. Theor Appl Climatol 53:231–243

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate; an exploration of regional climate model projections. Clim Chang 81(2007):71–95

    Article  Google Scholar 

  • Caesar J, Alexande LV, Trewin B, Tse-ring K, Sorany L, Vuniyayawa V, Keosavang N, Shimana A, Htay MM, Karmacharya J, Jayasinghearachchi DA, Sakkamart J, Soares E, Hung LT, Thuong LT, Hue CT, Dung NTT, Hung PV, Cuong HD, Cuongo NM, Sirabaha S (2011) Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int J Climatol 31:791–801

    Article  Google Scholar 

  • Clark R, Brown S, Murphy J (2006) Modelling Northern Hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435

    Article  Google Scholar 

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of synthesis and assessment product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological & Environmental Research, Washington, DC. 154p

    Google Scholar 

  • Dairaku K, Emori S (2006) Dynamic and thermodynamic influences on intensified daily rainfall during the Asian summer monsoon under doubled atmospheric CO2 conditions. Geophys Res Lett 33. doi:10.1029/2005GL024754. ISSN: 0094-8276

  • Douville H, Viterbo P, Mahfouf JF, Beljaars ACM (2000) Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon Weather Rev 128:1733–1756

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models. J Geophys Res 110(D3):4124–4137

    Google Scholar 

  • Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Multigas Mitigation and Climate Policy. Energy J 3(Special issue). doi:10.5547/issn0195-6574-ej-volsi2006-nosi3-17

  • Gao X, Xu Y, Zhao Z et al (2006) Impacts of horizontal resolution and topography on the numerical simulation of East Asian precipitation. Chin J Atmos Sci 30:185–192. (in Chinese)

    Google Scholar 

  • Giorgi F, Bi X (2005) Regional changes in surface climate interannual variability for the 21st century from ensembles of global model simulations. Geophys Res Lett 32:L13701. doi:10.1029/2005GL023002

    Article  Google Scholar 

  • Giorgi F et al (2001a) Regional climate information — evaluation and projections in climate change 2001. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaoxu D (eds) The scientific basis, contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 583–638. (Chapter 10)

    Google Scholar 

  • Giorgi F, Whetton PW, Jones RG, Christensen JH, Mearns LO, Hewitson B, von Storch H, Francisco R, Jack C (2001b) Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys Res Lett 28:3317–3320

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469

    Article  Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359–373

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M, Sikka DR, Tyagi A (2015) Observed changes in southwest monsoon rainfall over India during 1901–2011. Int J Climatol 35:1881–1898

    Article  Google Scholar 

  • Hijioka Y, Matsuoka Y, Nishimoto H, Masui M, Kainuma M (2008) Global GHG emissions scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108

    Google Scholar 

  • Huntingford C, Jones RG, Prudhomme C, Lamb R, Gash JHC (2003) Regional climate model predictions of extreme rainfall for a changing climate. Q J R Meteorol Soc 129:1607–1621

    Article  Google Scholar 

  • IPCC-WG-1 (2013) Climate change 2013. In: Stocker TF, Quin GK et al (eds) The physical science basis. Cambridge University Press, Cambridge. 1535p

    Google Scholar 

  • Jones PD, Briffa KR (1992) Global surface air temperature variations during the 20th century: Part 1. Spatial, temporal and seasonal details. The Holocene 2:165–179

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Clim 8:2181–2199

    Article  Google Scholar 

  • Kothawale DR, Munot AA, Krishna Kumar K (2010) Surface air temperature variability over India during 1901–2007, and its association with ENSO. Clim Res 42:89–104

    Article  Google Scholar 

  • Krishna Kumar K et al (2003) Future scenarios of extreme rainfall and temperature over India. In: Proceedings of the workshop on scenarios and future emissions, Indian Institute of Management (IIM), Ahmedabad, July 22, 2003. NATCOM Project Management Cell, Ministry of Environment and Forests, Government of India, New Delhi, pp 56–68

    Google Scholar 

  • Krishna Kumar K, Patwardhan SK, Kulkarni AK, Kamla K, Koteswar Rao K, Johns R (2011) Simulation and future projections of summer monsoon climate over India by a high resolution regional climate model (PRECIS). Curr Sci 101:312–326

    Google Scholar 

  • Kulkarni A, Patwardhan S, Krishna Kumar K, Ashok K, Krishnan R (2013) Projected climate change in the Hindu Kush–Himalayan region by using the high-resolution regional climate model PRECIS. Mt Res Dev 33(2):142–151

    Article  Google Scholar 

  • Lal M, Harasawa H (2001) Future climate change scenarios for Asia as inferred from selected coupled atmosphere-ocean global climate models. J Meteorol Soc Jpn 79(1):219–227

    Article  Google Scholar 

  • Lal M, Singh SK (1998) Global warming and monsoon climate. Mausam 52:245–262

    Google Scholar 

  • Lal M, Nozawa T, Emori S, Harasawa H, Takahashi K, Kimoto M, Abe-Ouchi A, Nakajima T, Takemura T, Numaguti A (2001) Future climate change: implications for Indian summer monsoon and its variability. Curr Sci 81:1196–1207

    Google Scholar 

  • Liu X, Chen B (2000) Climate warming in Tibetan Plateau during recent decades. Int J Climatol 20(4):1729–1742

    Article  Google Scholar 

  • Marinucci MR, Giorgi F (1992) A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model: 1. Present-day seasonal climate simulation. J Geophys Res 97:9989–10009

    Article  Google Scholar 

  • May W (2004) Potential future changes in the Indian summer monsoon due to greenhouse warming: analysis of mechanisms in a global timeslice experiment. Clim Dyn 22:389–414. doi:10.1007/s00382-003-0389-2

    Article  Google Scholar 

  • McBride J, Haylock MR, Nicholls N (2003) Relationships between the Maritime Continent heat source and the El Niño-Southern Oscillation phenomena. J Clim 16:2905–2914

    Article  Google Scholar 

  • Murari KK, Ghosh S, Patwardhan A, Daly E, Salvi K (2015) Intensification of future severe heat waves in India and their impact on heat stress and mortality. Reg Environ Chang 15:569–579. doi:10.1007/s10113-014-0660-6

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special report on emission scenarios; IPCC working group-III special report. Cambridge University Press, Cambridge/New York. 599p

    Google Scholar 

  • Nazrul Islam M, Uyeda H (2007) Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens Environ 108:264–276

    Article  Google Scholar 

  • Noguer M, Jones R, Hassell D, Hudson D, Wilson S, Jenkins G, Mitchell J (2002) Workbook on generating high resolution climate change scenarios using PRECIS. Hadley Centre for Climate Prediction and Research, Met Office, Bracknell, p 43

    Google Scholar 

  • Oza M, Kishtawal CM (2015) Spatio-temporal changes in temperature over India. Curr Sci 109(6):1154–1158

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202. doi:10.1029/2004GL019836

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. Climate change 2007. Impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–22

    Google Scholar 

  • Patwardhan SK, Krishna Kumar K, Kamala K, Preethi B, Revadekar JV, Rupa Kumar K (2008) Characteristics of Indian Summer monsoon in the warming scenario. In: Vinayachandran PN (ed) Understanding and forecasting of monsoons. Daya, Delhi, pp 150–157

    Google Scholar 

  • Räisänen J (2003) CO2 - induced changes in atmospheric angular momentum in CMIP2 experiments. J Clim 16:132–143

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Rao S, Riahi K (2006) The role of non-CO2 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. Multigas mitigation and climate policy. Energy J 3(Special issue):177–200

    Google Scholar 

  • Revadekar JV, Kothawale DR, Patwardhan SK, Pant GB, Rupakumar K (2012) About the observed and future changes in temperature extremes over India. Nat Hazards 60(3):1133–1155

    Article  Google Scholar 

  • Revadekar JV, Hameed S, Collins D, Manton M, Sheikh M, Borgaonkar HP, Kothawale DR, Adnan M, Ahmed AU, Ashraf J, Baidya S, Islam N, Jayasinghearachchi D, Manzoor N, Premalal KHMS, Shreshta ML (2013) Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. Int J Climatol 33:199–209. doi:10.1002/joc.3418

    Article  Google Scholar 

  • Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935. doi:10.1016/j.techfore.2006.05.026

    Article  Google Scholar 

  • Rowell DP (2005) A scenario of European climate change for the late 21st century: seasonal means and interannual variability. Clim Dyn 25:837–849

    Article  Google Scholar 

  • Rupa Kumar K, Ashrit RG (2001) Regional aspects of global climatic change simulation: validation and assessment of climate response over Indian monsoon region to transient increase of greenhouse gases and sulphate aerosols. Mausam 52:229–244

    Google Scholar 

  • Rupa Kumar K, Krishna Kumar K, Ashrit RG, Patwardhan SK, Pant GB (2002) Climate change in India: observations and model projections. In: Shukla PR, Sharma SK, Ramana PV (eds) Climate change and India. Tata McGraw-Hill Ltd., New Delhi, pp 24–75

    Google Scholar 

  • Rupa Kumar K, Krishna Kumar K, Prasanna V, Kamala K, Deshpande NR, Patwardhan SK, Pant GB (2003) Future climate scenarios. In: Shukla PR, Sharma SK, Ravindranath NH, Garg A, Bhattacharya S (eds) Climate change and India: vulnerability assessment and adaptation. Universities Press, Hyderabad, pp 69–127

    Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High resolution climate change scenario for India for the 21st century. Curr Sci 90(3):334–345

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability for European summer heat waves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Semenov VA, Bengtsson L (2002) Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Clim Dyn 19:123–140

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Mayawasky PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on the temperature records from Nepal for the period 1971-94. J Clim 12(9):2775–2786

    Article  Google Scholar 

  • Shrestha AB, Bajracharya SR, Sharma AR, Duo C, Kulkarni A (2016) Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. Int J Climatol:1–18. doi:10.1002/joc.4761

  • Sinha Ray KC, De US (2003) Climate change in India as evidenced from instrumental records. WMO Bull 52(1):53–59

    Google Scholar 

  • Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with the MiniCAM. Energy J (Special issue #3):373-391

    Google Scholar 

  • Stephenson DB, Douville H, Rupa Kumar K (2001) Searching for a fingerprint of global warming in the Asian summer monsoon. Mausam 52:213–220

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GE (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Chang 79:185–211

    Article  Google Scholar 

  • Turner A, Annamalai H (2012) Climate change and the south Asian monsoon. Nat Clim Chang 2:587–595. doi:10.1038/nclimate1495

    Article  Google Scholar 

  • Tyagi A, Goswami BN (2009) Assessment of climate change and adaptation in India. Clim Sense:68–70

    Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by 8 GCMs. Geophys Res Lett 33. doi:10.1029/2005GL025336

  • Vidale PL, Lüthi D, Wegmann R, Schär C (2007) European climate variability in a heterogeneous multi-model ensemble. Clim Chang. doi:10.1007/s10584-006-9218-z

  • Voss R, May W, Roeckner E (2002) Enhanced resolution modeling study on anthropogenic climate change: changes in the extremes of the hydrological cycle. Int J Climatol 22:755–777

    Article  Google Scholar 

  • van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006) Long-term multi-gas scenarios to stabilise radiative forcing — exploring costs and benefits within an integrated assessment framework. Multigas mitigation and climate policy. Energy J 3(Special issue):201–234

    Google Scholar 

  • van Vuuren D, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang. doi:10.1007/s10584-006-9172-9

  • Wise MA, Calvin KV, Thomson AM, Clarke LE, Bond-Lamberty B, Sands RD, Smith SJ, Janetos AC, Edmonds JA (2009) Implications of Limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  CAS  Google Scholar 

  • Xu YL, Huang XY, Zhang Y, Lin WT, Lin ED (2006) Statistical analyses of climate change scenarios over China in the 21st century. Adv Clim Change Res 2:50–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pant, G.B., Kumar, P.P., Revadekar, J.V., Singh, N. (2018). Climate Models, Projections, and Scenarios. In: Climate Change in the Himalayas. Springer, Cham. https://doi.org/10.1007/978-3-319-61654-4_4

Download citation

Publish with us

Policies and ethics