Skip to main content
Log in

Radiation Tolerant SRAM Cell Design in 65nm Technology

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

In this paper, eight different SRAM cells are studied and evaluated with a 65nm CMOS technology. The cells were designed with radiation-hardening-by-design approaches including schematic and layout techniques. The eight types of cells were placed into eight pages of an SRAM test chip. The alpha and proton irradiation demonstrated that the Dual Interlocked Cell (DICE) has the best radiation-tolerant performance, but requires the largest area. The 6T and 11T cells designed with charge cancellation techniques can reduce soft errors up to 2-3 times with less area overhead. Several DICE variants were developed with reduced area overhead and showed SEU resilience performance equivalent to DICE. Simulation results are also presented in this paper to validate the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmad S, Alam N, Hasan M (2017) Low Leakage Write-Enhanced Robust 11T SRAM Cell with Fully Half-Select-Free Operation. Proceedings International Conference on Trends in Electronics and Informatics, pp. 419–424

    Google Scholar 

  2. Andrews JL, Schroeder JE, Gingerich BL, Kolasinski WA, Koga R, Diehl SE (1982) Single Event Error Immune CMOS RAM. IEEE Trans Nucl Sci 29(6):2040–2043

    Article  Google Scholar 

  3. Baumann R (2005) Soft Errors in Advanced Computer Systems. IEEE Des Test Comput 22(3):258–266

    Article  Google Scholar 

  4. Chatterjee I, Mahatme NN, Bhuva BL, Reed RA, Schrimpf RD, Narasimham B, Vedula N, Bartz B (2014) Impact of Technology Scaling on SRAM Soft Error Rates. IEEE Trans Nucl Sci 61(6):3512–3518

    Article  Google Scholar 

  5. Chen CL, Hsiao MY (1984) Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review. IBM J Res Dev 28(2):124–134

    Article  Google Scholar 

  6. Chen Q, Wang H, Chen L, Li L, Zhao X, Liu R, Chen M, Li X (2016) An SEU-Resilient SRAM Bitcell in 65-nm CMOS Technology. Journal of Electronic Testing: Theory and Applications (JETTA) 32(3):385–391

    Article  Google Scholar 

  7. Chua CT, Ong HG, Sanchez K, Perdu P, Gan CL (2016) Effects of Voltage Stress on the Single Event Upset (SEU) Response of 65nm Flip Flop. Microelectron Reliab 64:199–203

    Article  Google Scholar 

  8. Dodd PE, Massengill LW (2003) Basic Mechanisms and Modeling of Single-event Upset in Digital Microelectronics. IEEE Trans Nucl Sci 50(3):583–602

    Article  Google Scholar 

  9. El Moukhtari I, Pouget V, Larue C, Darracq F, Lewis D, Perdu P (2013) Impact of Negative Bias Temperature Instability on the Single-event Upset Threshold of a 65nm SRAM Cell. Microelectron Reliab 53(9–11):1325–1328

    Article  Google Scholar 

  10. Giddings AE, Hewlett FW, Treece RK, Nichols DK, Smith LS, Zoutendyk JA (1985) Single Event Upseet Immune Intergrated Circuit For Project Galileo. IEEE Trans Nucl Sci 32(6):4159–4163

    Article  Google Scholar 

  11. Guenzer C, Wolicki E, Alias R (1979) Single Event Upset of Dynamic Rams by Neutrons and Protons. IEEE Trans Nucl Sci 26(6):5048–5052

    Article  Google Scholar 

  12. iROC Technology, TFIT reference manual, software version 4th (2014)

  13. Jahinuzzaman SM, Rennie DJ, Sachdev M (2009) A Soft Error Tolerant 10T SRAM Bit-cell with Differential Read Capability. (10 Transistor, Static Random Access Memory) (Report). IEEE Trans Nucl Sci 56(6):3768–3773

    Article  Google Scholar 

  14. Kim JS, Chang IJ (2017) We-Quatro: Radiation-Hardened SRAM Cell With Parametric Process Variation Tolerance. IEEE Trans Nucl Sci 64(9):2489–2496

    Article  Google Scholar 

  15. Krohn M, Bentele B, Cumalat JP, Wagner SR, Christian DC, Deptuch G, Fahim F, Hoff J, Shenai A (2015) Radiation Tolerance of 65 nm CMOS Transistors. J Instrum 10(12):P12007

  16. Lee H-HK, Klas L, Mounaim B, Prasanthi R, Linscott IR, Inan US, Mitra S (2010) LEAP: Layout Design through Error-aware Transistor Positioning for Soft-error Resilient Sequential Cell Design. IEEE International Reliability Physics Symposium Proceedings: 203–212

  17. Li L (2015) Soft Error Tolerant Design of Static Random Access Memory Bitcell. Dalhousie University, M.Sc. Thesis

    Google Scholar 

  18. Li L, Li Y, Wang H, Liu R, Wu Q, Newton M, Ma Y, Chen L (2015) Simulation and Experimental Evaluation of a Soft Error Tolerant Layout for SRAM 6T Bitcell in 65nm Technology. J Electron Test 31(5–6):561–568

    Article  Google Scholar 

  19. Li Y, Li L, Ma Y, Chen L, Liu R, Wang H, Wu Q, Newton M, Chen M (2016) A 10-Transistor 65nm SRAM Cell Tolerant to Single-Event Upsets. J Electron Test 32(2):137–145

    Article  Google Scholar 

  20. Li Y-Q, Wang H-B, Liu R, Chen L, Nofal I, Shi S-T, He A-L, Guo G, Baeg SH, Wen S-J, Wong R, Chen M, Wu Q (2017) A Quatro-Based 65-nm Flip-Flop Circuit for Soft-Error Resilience. IEEE Trans Nucl Sci 64(6):1554–1561

    Article  Google Scholar 

  21. Mitra S, Brelsford K, Kim YM, Lee H-HK, Li Y (2011) Robust System Design to Overcome CMOS Reliability Challenges. IEEEJ Emerg Sel Top Circuits Syst 1(1):30–41

  22. Muhammad S, Chechenin NG, Torres FS, Gulzari UA, Butt MU, Ming Z, Khan EU (2017) Single Event Upset Rate Determination for 65nm SRAM Bit-cell in LEO Radiation Environments. Microelectron Reliab 78:11–16

    Article  Google Scholar 

  23. Wu Q, Li Y, Chen L, He A, Guo G, Baeg SH, Wang H, Liu R, Li L, Wen SJ, Wong R, Allman S, Fung R (2015) Supply Voltage Dependence of Heavy Ion Induced SEEs on 65nm CMOS Bulk SRAMs. IEEE Trans Nucl Sci 62(4):1898–1904

    Article  Google Scholar 

  24. Wyatt RC, McNulty PJ, Toumbas P, Filz RC (1979) Soft Errors Induced by Energetic Protons. IEEE Trans Nucl Sci 26(6):4905–4910

    Article  Google Scholar 

  25. Yan A, Huang Z, Yi M, Xu X, Ouyang Y, Liang H (2017) Double-Node-Upset-Resilient Latch Design for Nanoscale CMOS Technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25(6):1978–1982

  26. Yan A, Lai C, Zhang Y, Cui J, Huang Z, Song J, Guo J, Wen X (2021) Novel Low Cost, Double-and-Triple-Node-Upset-Tolerant Latch Designs for Nano-scale CMOS. IEEE Trans Emerg Top Comput 9:520–533

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haonan Tian.

Additional information

Responsible Editor: P. Girard

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, X., Tian, H. et al. Radiation Tolerant SRAM Cell Design in 65nm Technology. J Electron Test 37, 255–262 (2021). https://doi.org/10.1007/s10836-021-05941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-021-05941-5

Keywords

Navigation