Skip to main content
Log in

Precursor synthesis and properties of iron and lithium co-doped cadmium oxide

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lithium and iron co-doped cadmium oxide Cd0.9(Li1-xFex)0.1O (x = 0.1, 0.3, 0.5, 0.7) with NaCl structure has been synthesized using formate of the composition Cd0.9(Li1-xFex)0.1(HCOO)2·2H2O as a precursor. The NMR spectroscopy results demonstrate that the structure of lithium-doped cadmium oxide appears to have impurity centers only of one type. All the synthesized samples show a metal-like conductivity as indicated by the growth of their electrical resistance with temperature increasing in the interval 78–330 K. The study of the magnetic properties of the Cd0.9(Li1-xFex)0.1O samples at 5 and 300 K revealed that they are ferromagnets, whose saturation magnetization increases with the iron concentration both at low and room temperature reaching the maximal values in the samples with a Li and Fe concentration of 3 and 7 at.%, respectively. An enhancement of the iron concentration in Cd0.9(Li1-xFex)0.1O from x = 0.5 to x = 0.7 leads to an abrupt growth of the magnetization from 0.30 to 1.94 emu/g at 5 K and from 0.16 to 1.03 emu/g at 300 K. Iron doping with a simultaneous reduction of the lithium concentration also results in an increase of the band gap. The properties of these compounds are explained on the basis of first-principles calculations of their band structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig.15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. F.A. Benko, F.P. Koffyberg, Quantum efficiency and optical transitions of CdO photoanodes. Solid State Commun. 57, 901 (1986). https://doi.org/10.1016/0038-1098(86)90920-8

    Article  CAS  Google Scholar 

  2. S. Ghotekar, A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 3, 187 (2019). https://doi.org/10.22034/ajgc.2018.140313.1084

  3. A. Tadjarodi, M. Imani, A novel nanostructure of cadmium oxide synthesized by mechanochemical method. Mater. Res. Bull. 46, 1949 (2011). https://doi.org/10.1016/j.materresbull.2011.07.016

    Article  CAS  Google Scholar 

  4. A. Tadjarodi, M. Imani, H. Ke, Application of a facile solid-state process to synthesize the CdO spherical nanoparticles. Intern. Nano Lett. 3, 43 (2013). https://doi.org/10.1186/2228-5326-3-43

    Article  CAS  Google Scholar 

  5. N. Shanmugam, B. Saravanan, R. Reagan, N. Kannadasan, K. Sathishkumar, S. Cholan, Effect of thermal annealing on the Cd(OH)2 and preparation of CdO nanocrystals. Mod. Chem. Appl. 2, 1000124 (2014). https://doi.org/10.4172/2329-6798.1000124

    Article  CAS  Google Scholar 

  6. Q. Lu, S.F. Wang, L.J. Li, J.L. Wang, S.Y. Dai, W. Yu, G.S. Fu, Electrical and thermal transport properties of CdO ceramics. Sci. China-Phys. Mech. Astron. 57, 1644 (2014). https://doi.org/10.1007/s11433-014-5405-5

    Article  CAS  Google Scholar 

  7. X. Zhang, H. Li, J. Wang, Effect of sintering temperature on thermoelectric properties of CdO ceramics. J. Adv. Ceram. 4, 226 (2015). https://doi.org/10.1007/s40145-015-0153-1

    Article  CAS  Google Scholar 

  8. R. Liu, L. Gao, L. Li, X. Zha, J. Wang, G. Fu, S. Wang, Enhanced high-temperature thermoelectric performance of CdO ceramics with randomly distributed micropores. J. Am. Ceram. Soc. 100, 3239 (2017). https://doi.org/10.1111/jace.14849

    Article  CAS  Google Scholar 

  9. K. Anandhan, R.T. Kumar, Synthesis, FTIR, UV–Vis and Photoluminescence characterizations of triethanolamine passivated CdO nanostructures. Spectrochim. Acta A. 149, 476 (2015). https://doi.org/10.1016/j.saa.2015.04.035

    Article  CAS  Google Scholar 

  10. N. Thovhogi, E. Park, E. Manikandan, M. Maaza, A. Gurib-Fakim, Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract. J. Alloys Comp. 655, 314 (2016). https://doi.org/10.1016/j.jallcom.2015.09.063

    Article  CAS  Google Scholar 

  11. M. Bououdina, A.A. Dakhel, M. El-Hilo, D.H. Anjum, M.B. Kanound, S. Goumri-Said, Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study. RSC Adv. 5, 33233 (2015). https://doi.org/10.1039/c5ră9b

    Article  CAS  Google Scholar 

  12. A.A. Dakhel, Effect of thermal annealing in different gas atmospheres on the structural, optical and electrical properties of Li-doped CdO nanocrystalline films. Solid State Sci. 13, 1000 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.02.002

    Article  CAS  Google Scholar 

  13. R.K. Gupta, Z. Serbetci, F. Yakuphanoglu, Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. J. Alloys Comp. 515, 96 (2012). https://doi.org/10.1016/j.jallcom.2011.11.098

    Article  CAS  Google Scholar 

  14. B. Sahin, F. Bayansal, Facile synthesis of group-I elements (K, Li and Na)-doped nanostructured CdO films. Phil. Mag. 94, 4171 (2014). https://doi.org/10.1080/14786435.2014.981607

    Article  CAS  Google Scholar 

  15. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, Structural, morphological, optical and electrical properties of spray deposited lithium doped CdO thin films. Published by the American Institute of Physics DAE Solid State Physics Symposium 2015 AIP Conf. Proc. 1731, 080022 (2015). https://doi.org/10.1063/1.4947900

  16. V.P. Zhukov, V.N. Krasil’nikov, A.P. Tyutyunnik, T.V. Dyachkova, N.A. Zhuravlev, A.V. Skachkov, T.A. Denisova, I.R. Shein, Impurity centers and electronic band structure of lithium-doped cadmium oxide. Ceram. Intern. 44, 17313 (2018). https://doi.org/10.1016/j.ceramint.2018.06.193

  17. A. Das, C.P. Saini, D. Singh, R. Ahuja, A. Kaur, S. Aliukov, D. Shukla, F. Singh, High temperature mediated rocksalt to wurtzite phase transformation in cadmium oxide nano-sheets and their theoretical evidence. Nanoscale 11, 14802 (2019). https://doi.org/10.1039/c9nr01832h

    Article  CAS  Google Scholar 

  18. M.H. Hassouni, K.A. Mishjil, S.S. Chiad, N.F. Habubi, Effect of gamma irradiation on the optical properties of Mg doped CdO thin films deposited by spray pyrolysis. Intern. Lett. Chem. Phys. Astron. 16, 26 (2013). https://doi.org/10.18052/www.scipress.com/ILCPA.16.26

  19. A.A. Dakhel, Development of electrical conduction with beryllium doping of CdO nanostructure thin films. Mater. Res. 18, 222 (2015). https://doi.org/10.1590/1516-1439.301014

    Article  CAS  Google Scholar 

  20. L. Ran, G. Lin-Jie, L. Long-Jiang, Z. Sheng-Jun, W. Jiang-Long, F. Guang-Sheng, W. Shu-Fang, High temperature thermoelectric performance of Ca2+doped CdO ceramics. Acta Phys. Sin. 64, 218101 (2015). https://doi.org/10.7498/aps.64.218101

    Article  CAS  Google Scholar 

  21. L. Gao, J. Wang, L. Li, S. Wang, S. Zhai, S. Liang, G. Fu, Tuning of the microstructure and thermoelectric properties of CdO ceramics by Mg substituting. Mater. Chem. Phys. 174, 172 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.069

    Article  CAS  Google Scholar 

  22. L. Gao, S. Wang, R. Liu, X. Zha, N. Sun, S. Wang, J. Wang, G. Fu, Enhanced thermoelectric performance in Mg and Ca substituted CdO ceramics. RSC Adv. 6, 42249 (2016). https://doi.org/10.1039/c6ra04175b

    Article  CAS  Google Scholar 

  23. A.A. Dakhel, Influence of dysprosium doping on the electrical and optical properties of CdO thin films. Sol. Energy 83, 934 (2009). https://doi.org/10.1016/j.solener.2008.12.015

    Article  CAS  Google Scholar 

  24. A.A. Dakhel, Band gap narrowing in CdO doped with europium. Optical Mater. 31, 691 (2009). https://doi.org/10.1016/j.optmat.2008.08.001

    Article  CAS  Google Scholar 

  25. S. Wang, F. Liu, Q. Lu, S. Dai, J. Wang, W. Yu, G. Fu, The effect of Er3+ doping on the structure and thermoelectric properties of CdO ceramics. J. Eur. Ceram. Soc. 33, 1763 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.025

    Article  CAS  Google Scholar 

  26. A. Alemi, S.W. Joo, S. Khademinia, M. Dolatyari, A. Bakhtiari, H. Moradi, S. Saeidi, Sol-gel synthesis, characterization, and optical properties of Gd3+-doped CdO sub-micron materials. Intern. Nano Lett. 3, 41 (2013). https://doi.org/10.1186/2228-5326-3-41

    Article  CAS  Google Scholar 

  27. H.Y. He, J. Lu, Band gap narrowing of cadmium oxide powder by rare earth praseodymium doping. MRS Commun. 3, 47 (2013). https://doi.org/10.1557/mrc.2013.6

    Article  CAS  Google Scholar 

  28. S. Wang, Q. Lu, L. Li, G. Fu, F. Liu, S. Dai, W. Yu, J. Wang, High-temperature thermoelectric properties of Cd1-xPrxO ceramics. Scripta Mater. 69, 533 (2013). https://doi.org/10.1016/j.scriptamat.2013.06.018

    Article  CAS  Google Scholar 

  29. A. Alemi, S. Khademinia, S.W. Joo, M. Dolatyari, A. Bakhtiari, H. Moradi, A. Esmaeilzadeh, Sol-gel synthesis, structural and optical properties investigation of Ce4+ doped CdO sub-micron materials. J. Appl. Chem. 8, 35 (2014)

    Google Scholar 

  30. M. Ravikumar, V. Ganesh, M. Shkir, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, S. AlFaify, Fabrication of Eu doped CdO [Al/Eu-nCdO/p-Si/Al] photodiodes by perfume atomizer based spray technique for opto-electronic applications. J. Mol. Struct. 1160, 311 (2018). https://doi.org/10.1016/j.molstruc.2018.01.095

    Article  CAS  Google Scholar 

  31. S. Jin, Y. Yang, J.E. Medvedeva, J.R. Ireland, A.W. Metz, J. Ni, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD. J. Am. Chem. Soc. 126, 13787 (2004). https://doi.org/10.1021/ja0467925.

  32. K.R. Murali, A. Kalaivanan, S. Perumal, N.N. Pillai, Sol-gel dip coated CdO: Al films. J. Alloys Comp. 503, 350 (2010). https://doi.org/10.1016/j.jallcom.2009.11.187

    Article  CAS  Google Scholar 

  33. S. Jin, Y. Yang, J.E. Medvedeva, L. Wang, S. Li, N. Cortes, J.R. Ireland, A.W. Metz, J. Ni, M.C. Hersam, A.J. Freeman, T.J. Marks, Tuning the properties of transparent oxide conductors. Dopant ion size and electronic structure effects on CdO-based transparent conducting oxides. Ga- and In-doped CdO thin films grown by MOCVD. Chem. Mater. 20, 220 (2008). https://doi.org/10.1021/cm702588m

  34. R. Kumaravel, K. Ramamurthi, V. Krishnakumar, Effect of indium doping in CdO thin films prepared by spray pyrolysis technique. J. Phys. Chem. Solids. 71, 1545 (2010). https://doi.org/10.1016/j.jpcs.2010.07.021

    Article  CAS  Google Scholar 

  35. A.A. Dakhel, Effect of thallium doping on the electrical and optical properties of CdO thin films. Phys. Stat. Sol. 205, 2704 (2008). https://doi.org/10.1002/pssa.200723472

    Article  CAS  Google Scholar 

  36. S. Sahare, R.K. Choubey, G. Jadhav, T.M. Bhave, S. Mukherjee, S. Kumar, A Comparative investigation of optical and structural properties of Cu-doped CdO-derived nanostructures. J. Supercond. Nov. Magn. 30, 1439 (2017). https://doi.org/10.1007/s10948-016-3943-y

    Article  CAS  Google Scholar 

  37. G. Fu, L. Gao, R. Liu, X. Zha, J. Wang, S. Wang, Synergistically tuning the electrical and thermal transport properties of CdO: Cu thermoelectric ceramics. Mater. Res. Express. 4, 075502 (2017). https://doi.org/10.1088/2053-1591/aa70d8

    Article  CAS  Google Scholar 

  38. X.Y. Zha, L.J. Ga, H.C. Bai, J.L. Wang, S.F. Wang, Optimize the thermoelectric performance of CdO ceramics by doping Zn. Chin. Phys. B. 10, 107202 (2017). https://doi.org/10.1088/1674-1056/26/10/107202

    Article  CAS  Google Scholar 

  39. A. Salem, Silver-doped cadmium oxide nanoparticles: Synthesis, structural and optical properties. Eur. Phys. J. Plus. 129, 263 (2014). https://doi.org/10.1140/epjp/i2014-14263-3

    Article  CAS  Google Scholar 

  40. M.R. Alam, M.M. Rahman, A.M.M. Tanveer Karim, M.K.R. Khan, Effect of Ag incorporation on structural and opto electric properties of pyrolized CdO thin films. Intern. Nano Lett. 8, 287 (2018). https://doi.org/10.1007/s40089-018-0251-5

  41. A.A. Dakhel, Electrical and optical properties of iron-doped CdO. Thin Solid Films 518, 1712 (2010). https://doi.org/10.1016/j.tsf.2009.11.026

    Article  CAS  Google Scholar 

  42. N. Rajkumar, V.M. Susila, K. Ramachandran, On the possibility of ferromagnetism in CdO: Mn at room temperature. J. Exp. Nanosci. 6, 389 (2011). https://doi.org/10.1080/17458080.2010.497969

    Article  CAS  Google Scholar 

  43. F. Yakuphanoglu, Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method. J. Sol-Gel Sci. Technol. 59, 569 (2011). https://doi.org/10.1007/s10971-011-2528-2

    Article  CAS  Google Scholar 

  44. L.V.K. Rao, D.V. Sathish, C.V. Reddy, U.S.U. Thampy, K. Venkateswarlu, P.S. Rao, R.V.S.S.N. Ravikumar, Structural properties of Cr3+-doped cadmium oxide nanopowders. Appl. Magn. Reson. 42, 403 (2012). https://doi.org/10.1007/s00723-011-0308-3

  45. H. Colak, O. Turkoglu, Synthesis and characterization of Fe-Doped CdO binary system, J. Ceram. Process. Res. 14, 616 (2013). https://doi.org/10.36410/jcpr.2013.14.5.616

  46. T. Ahmad, S. Khatoon, K. Coolahan, S.E. Lofland, Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1-xMnxO (0.04<x=0.10) solid solutions. J. Alloys Compd. 558, 117 (2013). https://doi.org/10.1016/j.jallcom.2012.12.159

  47. T. Ahmad, S. Khatoon, Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res. 28, 1245 (2013). https://doi.org/10.1557/jmr.2013.69

    Article  CAS  Google Scholar 

  48. Z.Q. Liu, R. Guo, G.R. Li, Q. Bu, W.X. Zhao, Y.X. Tong, Facile electrodeposition of large-area CdO and Cd1-xCoxO curved nanowires. Electrochim. Acta. 59, 449 (2012). https://doi.org/10.1016/j.electacta.2011.10.095

    Article  CAS  Google Scholar 

  49. T. Ahmad, S. Khatoon, S.E. Lofland, G. Thakur, Structural characterization and properties of nano-sized Cd1-xCoxO dilute magnetic semiconductors prepared by solvothermal method. Mater. Sci. Semicond. Proc. 17, 207 (2014). https://doi.org/10.1016/j.mssp.2013.09.025

    Article  CAS  Google Scholar 

  50. S. Kumar, S. Layek, M. Yashpal, A.K. Ojha, Room temperature ferromagnetism in undoped and Mn doped CdO nanostructures. J. Magn. Magn. Mater. 393, 555 (2015). https://doi.org/10.1016/j.jmmm.2015.06.011

    Article  CAS  Google Scholar 

  51. R. Ranjithkumar, A.A. Irudayaraj, G. Jayakumar, A.D. Raj, S. Karthick, R. Vinayagamoorthy, Synthesis and Properties of CdO and Fe doped CdO Nanoparticles. Materials Today: Proceedings. 3, 1378 (2016). https://doi.org/10.1016/j.matpr.2016.04.018

    Article  Google Scholar 

  52. W.Z. Tawfik, M. Esmat, S.I. El-Dek, Drastic improvement in magnetization of CdO nanoparticles by Fe doping. Appl. Nanosci. 7, 863 (2017). https://doi.org/10.1007/s13204-017-0591-x

    Article  CAS  Google Scholar 

  53. D.J. Jeejamol, A.M.E. Raj, K. Jayakumari, C. Ravidhas, Optimization of CdO nanoparticles by Zr4+ doping for better photocatalytic activity. J. Mater. Sci.: Mater. Electron. 29, 97 (2018). https://doi.org/10.1007/s10854-017-7893-3

  54. L.A. Wahab, H.A. Zayed, I.S. Yahia, N.M. Yousif, Structural and optical properties of some metals doped CdO synthesized by sol-gel. J. Scientific Res. Sci. 32, 391 (2015). https://doi.org/10.21608/jsrs.2015.18837

  55. N.S. Gajbhiye, R.S. Ningthoujam, A. Ahmed, D.K. Panda, S.S. Umre, S.J. Sharma, Re-dispersible Li+ and Eu3+ co-doped CdO nanowires: Luminescence studies. Proc. of ASID ’06, New Delhi 8–12 Oct, 2006, pp. 275–277

  56. A.A. Dakhel, M. El-Hilo, M. Bououdina, Cu-Codoping for the enhancement of ferromagnetism of Fe-doped CdO nanopowders. J. Supercond. Nov. Magn. 27, 2089 (2014). https://doi.org/10.1007/s10948-014-2553-9

    Article  CAS  Google Scholar 

  57. A.A. Dakhel, M. Bououdina, Development of transparent conducting copper and iron co-doped cadmium oxide films: Effect of annealing in hydrogen atmosphere. Mater. Sci. Semicond. Proc. 26, 527 (2014). https://doi.org/10.1016/j.mssp.2014.05.015

    Article  CAS  Google Scholar 

  58. M. Bououdina, A.A. Dakhel, Creation of RT-FM in CdO nanocrystalline powder by codoping with Cu and Gd: Effect of annealing in hydrogen atmosphere. J. Alloys Compd. 601, 162 (2014). https://doi.org/10.1016/j.jallcom.2014.02.146

    Article  CAS  Google Scholar 

  59. R. Aydin, B. Sahin, Comprehensive research on physical properties of Zn and M (M: Li, Na, K) double doped cadmium oxide (CdO) nanostructures using SILAR method. Ceram. Intern. 43, 9285 (2017). https://doi.org/10.1016/j.ceramint.2017.04.087

    Article  CAS  Google Scholar 

  60. R. Aydin, H. Cavusoglu, B. Sahin, Transition metal Mn/Cu co-doped CdO transparent conductive films: Effect on structural, morphological and optical characteristics. J. Alloys Compd. 785, 523 (2019). https://doi.org/10.1016/j.jallcom.2019.01.221

    Article  CAS  Google Scholar 

  61. R. Aydin, B. Sahin, Li: Ce co-doped CdO films synthesized by SILAR method: Effects of rare earth element Ce content on the physical attributes. Ceram. Intern. 44, 22249 (2018). https://doi.org/10.1016/j.ceramint.2018.08.346

    Article  CAS  Google Scholar 

  62. H. Cavusoglu, R. Aydin, B. Sahin, A comparative study on cobalt and aluminum as a dual doping element for CdO films. Ceram. Intern. 45, 899 (2019). https://doi.org/10.1016/j.ceramint.2018.09.265

    Article  CAS  Google Scholar 

  63. R.H. Meinhold, Studies of impure cadmium oxide semiconductors using NMR, EPR and conductivity measurements. J. Phys. Chem. Solids. 48, 927 (1987). https://doi.org/10.1016/0022-3697(87)90129-6

    Article  CAS  Google Scholar 

  64. K.R. Kishore, D. Balamurugan, B.G. Jeyaprakash, Electrospinning based CdO nanograins for formaldehyde vapour detection by chemiresistive method. Mater. Sci. Semicond. Proc. 121, 105296 (2021). https://doi.org/10.1016/j.mssp.2020.105296

    Article  CAS  Google Scholar 

  65. V.N. Krasil’nikov, I.V. Baklanova, V.P. Zhukov, O.I. Gyrdasova, T.V. Dyachkova, A.P. Tyutyunnik, Thermally stimulated infrared shift of cadmium oxide optical absorption band edge. Mater. Sci. Semicond. Proc. 124, 105605 (2021). https://doi.org/10.1016/j.mssp.2020.105605

  66. A.A. Dakhel, Structural, optical, and magnetic studies of iodine-doped CdO nanopowders and films. J. Sol-Gel Sci. Technol. 85, 311 (2018). https://doi.org/10.1007/s10971-017-4567-9

    Article  CAS  Google Scholar 

  67. V.P. Zhukov, N.I. Medvedeva, V.N. Krasil’nikov, First-principles study of intrinsic defects in CdO. Intern. J. Modern Phys. B. 32, 1850059 (2018). https://doi.org/10.1142/S0217979218500595

  68. V.N. Krasil’nikov, T.V. Dyachkova, A.P. Tyutyunnik, O.I. Gyrdasova, Yu.A. Perevozchikova, V.V. Marchenkov, H.W. Weber, Precursor synthesis and magnetic properties of Cd1-xFexO (0≤x≤0.07). Mendeleev Commun. 27, 456 (2017). https://doi.org/10.1016/j.mencom.2017.09.008

  69. V.N. Krasil’nikov, V.P. Zhukov, O.I. Gyrdasova, T.V. Dyachkova, A.P. Tyutyunnik, Yu.A. Perevozchikova, H.W. Weber, A. Zaleski, V.V. Marchenkov, Precursor synthesis and magnetic properties of Cd1-xFexO (≤x≤0.07) polycrystalline solid solutions. J. Alloys Comp. 725, 1244 (2017). https://doi.org/10.1016/j.jallcom.2017.07.255

  70. R. Chaurasiya, A. Dixit, Point defects induced magnetism in CdO monolayer: A theoretical study. J. Magn. Magn. Mater. 469, 279 (2019). https://doi.org/10.1016/j.jmmm.2018.08.076

    Article  CAS  Google Scholar 

  71. I.G. Morozov, O.V. Belousova, M.V. Kuznetcov, Room temperature ferromagnetism in nanostructured submicron Cd/CdO particles. J. Mater. Sci.: Mater. Electron. 31, 6664 (2020). https://doi.org/10.1007/s10854-020-03222-z

  72. N.N. Jandow, M.S. Othman, N.F. Habubi, S.S. Chiad, K.A. Mishjil, I.A. Al-Baidhany, Theoretical and experimental investigation of structural and optical properties of lithium doped cadmium oxide thin films. Mater. Res. Express. 6, 116434 (2019). https://doi.org/10.1088/2053-1591/ab4af8

    Article  Google Scholar 

  73. K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, K. Ramamurthi, Chemical spray pyrolysis deposition of transparent and conducting Fe doped CdO thin films for ethanol sensor. Mater. Sci. Semicond. Proc. 40, 879 (2015). https://doi.org/10.1016/j.mssp.2015.07.090

    Article  CAS  Google Scholar 

  74. C. Aydın, O.A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Hazmi, I.S. Yahia, F. El-Tantawy, Controlling of crystal size and optical band gap of CdO nanopowder semiconductors by low and high Fe contents. J. Electroceram. 29, 155 (2012). https://doi.org/10.1007/s10832-012-9748-x

    Article  CAS  Google Scholar 

  75. A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, R. Asahi, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors. Proc. Natl. Acad. Sci. 98, 7113 (2001). https://doi.org/10.1073/pnas.121188298

    Article  CAS  Google Scholar 

  76. J.A. Bastin, R.W. Wright, The electrical conductivity of cadmium oxide at low temperatures. Proc. Phys. Soc. A. 68, 312 (1955). https://doi.org/10.1016/j.mssp.2015.07.090

    Article  CAS  Google Scholar 

  77. R.D. Pierce,S.A. Friedberg, Heat Capacities of Fe(HCOO)2 2H2O and Ni(HCOO)2 2H2O between 1.4 and 20 K. Phys. Rev. B. 3, 934 (1971). https://doi.org/10.1103/PhysRevB.3.934

  78. B. Malecka, A. Lacz, Thermal decomposition of cadmium formate in inert and oxidative atmosphere. Thermochim. Acta. 479, 12 (2008). https://doi.org/10.1016/j.tca.2008.09.003

    Article  CAS  Google Scholar 

  79. K. Mouaine, P. Becker, C. Carabatos-Nedelec, Thermal and spectroscopic study of dehydration of lithium formate monohydrate single-crystals. J. Therm. Anal. Calorim. 55, 807 (1999). https://doi.org/10.1023/A:1010125631748

    Article  CAS  Google Scholar 

  80. K. Muraishi, T. Takano, K. Nagase, N. Tanaka, Thermal decomposition of Fe(II) carboxylates: comparison of decomposition processes between the formate and malonate. J. Inorg. Nucl. Chem. 43, 2293 (1981). https://doi.org/10.1016/0022-1902(81)80252-7

    Article  CAS  Google Scholar 

  81. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  82. W. Kraus, G. Nolze, POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 29, 301 (1996). https://doi.org/10.1107/S0021889895014920

    Article  CAS  Google Scholar 

  83. A.N. Cherepanov, V.V. Marchenkov, V.E. Startsev, N.V. Volkenshtein, M. Glin'ski, High-field galvanomagnetic properties of compensated metals under electron-surface and intersheet electron-phonon scattering (tungsten). J. Low Temp. Phys. 80, 135 (1990). https://doi.org/10.1007/BF00683481

  84. C. Jacoboni, Theory of electron transport in semiconductors, (Springer Series in Solid-State Sciences, 2010), V. 165, p. 588. https://doi.org/10.1007/978-3-642-10586-9

  85. A.A. Ziabari, F.E. Ghodsi, G. Kiriakidis, Correlation between morphology and electro-optical properties of nanostructured CdO thin films: Influence of Al doping. Surf. Coat. Technol. 213, 15 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.003

    Article  CAS  Google Scholar 

  86. S.D. Sarma, E.H. Hwang, A. Kaminski, Temperature-dependent magnetization in diluted magnetic semiconductors. Phys. Rev. B. 67, 155201 (2003). https://doi.org/10.1103/PhysRevB.67.155201

    Article  CAS  Google Scholar 

  87. V.N. Krasilnikov, V.P. Zhukov, O.I. Gyrdasova, A.P. Tyutyunnik, T.V. Dyachkova, Yu.A. Perevozchikova, F. Sauerzopf, V.V. Marchenkov, Precursor synthesis, magnetic properties and electronic band structure of Mg1-xFexO (0<x<0.075). J. Alloys Compd. 789, 30–39 (2019). https://doi.org/10.1016/j.jallcom.2019.03.021

Download references

Acknowledgements

The research was carried out within the state assignment of the Ministry of Education and Science of the Russian Federation (theme “Spin”, No. AAAA-A18-118020290104-2), supported in part by “Electrical Engineering” Shanghai class 2 Plateau Discipline, the Government of the Russian Federation (Decree No. 211, Contract No. 02.A03.21.0006), “Electrical Engineering” Shanghai class 2 Plateau Discipline and the National Natural Science Foundation of China (NSFC, Nos. 12074242, 51862032). Absorption spectra were obtained using the equipment at the Center for Joint Use "Spectroscopy and Analysis of Organic Compounds" at the Postovsky Institute of Organic Synthesis, UB RAS. The optical measurements were carried out in accordance with the scientific and research plans and state assignment of the Institute of Solid State Chemistry, UB RAS (Grant No. AAAA-A19-119031890025-9). E.V.C. acknowledges funding by Saint Petersburg State University project for scientific investigations (ID No. 73028629). The calculations were performed on the URAN cluster at the Institute of Mathematics and Mechanics of the Urals Branch in RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Baklanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasil’nikov, V., Zhukov, V., Chulkov, E. et al. Precursor synthesis and properties of iron and lithium co-doped cadmium oxide. J Electroceram 48, 127–142 (2022). https://doi.org/10.1007/s10832-022-00278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00278-7

Keywords

Navigation