Skip to main content
Log in

Effects of the Ga-doping concentration on the characteristics of Zn0.7Mg0.3O thin films deposited by metal-organic chemical vapor deposition using an ultrasonic nebulization

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Ga-doped Zn0.7-xMg0.3O thin films were deposited on glass substrates at 350 °C by metal-organic chemical vapor deposition using an ultrasonic nebulization technique to transport the source precursors, and the effects of the Ga-doping concentration were investigated. The films with Ga-doping concentrations less than 5 mol% grew with [001] preferred orientation perpendicular to the substrate surface and were composed of large crystallites. At Ga content greater than 5 mol%, the films grew with random orientation and very small crystallite size. The charge carrier concentration in the films increased rapidly up to 4 mol% Ga and then decreased gradually with further increases in the Ga-content. The film resistivity decreased with increasing Ga-content up to 4 mol% due mainly to the increase in charge carrier concentration. Then, the resistivity increased gradually with increasing Ga-content due to the decrease in mobility. The lowest resistivity of the Ga-doped Zn0.7-xMg0.3O thin film was 3.8 × 10−1 Ωcm at the Ga doping concentration of 4 mol%. The mean transmittance in the visible range was more than 85% in all films. The optical band gap of the films increased with increasing Ga-doping concentration up to 5 mol% due to the Burstein-Moss effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.I. Park, G. Yi, H.M. Jang, Appl. Phys. Lett. 79(13), 2022–2024 (2001)

    Article  CAS  Google Scholar 

  2. K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, S. Niki, Appl. Phys. Lett. 85(8), 1374–1376 (2004)

    Article  CAS  Google Scholar 

  3. I.Y. Kim, S.W. Shin, M.G. Gang, S.H. Lee, K.V. Gurav, P.S. Patil, J.H. Yun, J.Y. Lee, J.H. Kim, Thin Solid Films 570, 321–325 (2014)

    Article  CAS  Google Scholar 

  4. G. Luka, B.S. Witkowski, L. Wachnicki, K. Goscinski, R. Jakiela, E. Guziewicz, M. Godlewski, E. Zielony, P. Bieganski, E. Placzek-Popko, W. Lisowski, J.W. Sobczak, A. Jablonski, J. Mater. Sci. 49(4), 1512–1518 (2014)

    Article  CAS  Google Scholar 

  5. Y. Kwon, Y. Li, Y.W. Heo, M. Jones, P.H. Holloway, D.P. Norton, Z.V. Park, S. Li, Appl. Phys. Lett. 84(14), 2685–2687 (2004)

    Article  CAS  Google Scholar 

  6. Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45, L857–L859 (2006)

    Article  CAS  Google Scholar 

  7. S. Chawla, K. Jayanthi, H. Chander, Phys. Status Solidi A 205(2), 271–274 (2008)

    Article  CAS  Google Scholar 

  8. F.Y. Meng, Y. Chiba, A. Yamada, M. Konagai, Sol. Energy Mater. Sol. Cells 91(20), 1887–1891 (2007)

    Article  CAS  Google Scholar 

  9. Y. Ke, J. Berry, P. Parilla, A. Zakutayev, R. O'Hayre, D. Ginley, Thin Solid Films 520(9), 3697–3702 (2012)

    Article  CAS  Google Scholar 

  10. D.J. Cohen, K.C. Ruthe, S.A. Barnett, J. Appl. Phys. 96(1), 459–467 (2004)

    Article  CAS  Google Scholar 

  11. S.W. Shin, I.Y. Kim, G.H. Lee, G.L. Agawane, A.V. Mohokar, G.S. Heo, J.H. Kim, J.Y. Lee, Cryst. Growth Des. 11(11), 4819–4824 (2011)

    Article  CAS  Google Scholar 

  12. K. Maejima, H. Shibata, H. Tampo, K. Matsubara, S. Niki, Thin Solid Films 518(11), 2949–2952 (2010)

    Article  CAS  Google Scholar 

  13. A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Holland, Appl. Phys. Lett. 75(21), 3327–3329 (1999)

    Article  CAS  Google Scholar 

  14. L. Meng, M. Konagai, S. Miyajima, Thin Solid Films 597, 144–150 (2015)

    Article  CAS  Google Scholar 

  15. T. Gruber, C. Kirchner, R. Kling, F. Reuss, Appl. Phys. Lett. 84(26), 5359–5361 (2004)

    Article  CAS  Google Scholar 

  16. C.H. Lee, M.S. Choi, J. Nanosci. Nanotechnol. 16(11), 11353–11358 (2016)

    Article  CAS  Google Scholar 

  17. I.T. Kim, C.H. Lee, S.J. Park, Jpn. J. Appl. Phys. 33, 5125–5128 (1994)

    Article  CAS  Google Scholar 

  18. X.L. Du, Z.X. Mei, Z.L. Liu, Y. Guo, T.C. Zhang, Y.N. Hou, Z. Zhang, Q.K. Xue, A.Y. Kuznetsov, Adv. Mater. 21(45), 4625–4630 (2009)

    Article  CAS  Google Scholar 

  19. C. Barret, T.B. Massalski, Structure of Metal (Pergamon Press, Oxford, 1980), pp. 204–205

    Google Scholar 

  20. Y.S. Lee, Y.C. Peng, J.H. Lu, Y.R. Zhu, H.C. Wu, Thin Solid Films 570, 464–470 (2014)

    Article  CAS  Google Scholar 

  21. E. Burstein, Phys. Rev. 93(3), 632–633 (1954)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Choi, MS. Effects of the Ga-doping concentration on the characteristics of Zn0.7Mg0.3O thin films deposited by metal-organic chemical vapor deposition using an ultrasonic nebulization. J Electroceram 41, 23–27 (2018). https://doi.org/10.1007/s10832-018-0147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0147-9

Keywords

Navigation