Skip to main content
Log in

Resistive switching memory using biomaterials

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Resistive switching memory (ReRAM) is emerging as a developed technology for a new generation of non-volatile memory devices. Natural organic biomaterials are potential elements of environmentally-benign, biocompatible, and biodegradable electronic devices for information storage and resorbable medical implants. Here, we highlight progress in exploiting biomaterials to fabricate a special category of bio-nanoelectronic memories called biodegradable resistive random access memory (bio-ReRAM). Bio-ReRAMs are beneficial because they are non-toxic and environmentally benign. Various types of biomaterials with their chemical compound, bio-ReRAM device design and structure, their relevance resistive switching (RS) behavior, and conduction mechanism are considered in detail. Particularly, we report physically-transient devices, their corresponding switching mechanism, and their dissolution by immersion in water. Finally, we review recent progress in the development of various types of flexible bio-ReRAMs, focusing on their flexibility and reliability as bendable nanoelectronics. Because most of these devices are candidates to become wearable, skin-compatible, and even digestible smart electronics, we discuss the future improvement of natural materials and the perspective of novel bio-ReRAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Zhu, H. Wang, W. Leow, Y. Cai, X. Loh, M. Han, X. Chen, Silk Fibroin for Flexible Electronic Devices. Adv. Mater. (Deerfield Beach, Fla) 28(22), 4250–4265 (2016)

    Article  Google Scholar 

  2. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911–918 (2004)

    Article  Google Scholar 

  3. D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)

    Article  Google Scholar 

  4. Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, K.-G. Neoh, Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 33(10), 917–978 (2008)

    Article  Google Scholar 

  5. Y. Zhou, S.-T. Han, Y. Yan, L. Zhou, L.-B. Huang, J. Zhuang, P. Sonar, V. Roy, Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci. Rep. 5, 10683 (2015)

  6. H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials–a road to sustainable high technology. Adv. Mater. 24(21), 2824–2837 (2012)

    Article  Google Scholar 

  7. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)

    Article  Google Scholar 

  8. S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M.A. Brenckle, B. Panilaitis, S.M. Won, Y.-S. Kim, A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)

    Article  Google Scholar 

  9. H. Wang, F. Meng, B. Zhu, W.R. Leow, Y. Liu, X. Chen, Resistive switching memory devices based on proteins. Adv. Mater. 27(46), 7670–7676 (2015)

    Article  Google Scholar 

  10. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)

    Article  Google Scholar 

  11. M. Irimia-Vladu, E.D. Głowacki, G. Voss, S. Bauer, N.S. Sariciftci, Green and biodegradable electronics. Mater. Today 15(7), 340–346 (2012)

    Article  Google Scholar 

  12. Y.-W. Kwon, C.H. Lee, D.-H. Choi, J.-I. Jin, Materials science of DNA. J. Mater. Chem. 19(10), 1353–1380 (2009)

    Article  Google Scholar 

  13. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21 (25-26), 2632–2663 (2009)

  14. N.R. Hosseini, J.S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 25(35), 5586–5592 (2015)

    Article  Google Scholar 

  15. N. Raeis-Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible Biomemristors. ACS Appl Mater Interfaces 8(11), 7326–7332 (2016)

    Article  Google Scholar 

  16. H.N. Raeis, J. Lee, Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 9(1), 419–426 (2015)

    Article  Google Scholar 

  17. K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. De Boeck, M. Jurczak, Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 4, 5532 (2014)

  18. Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, L. Fruk, Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl Phys Lett 99(25), 253301 (2011)

    Article  Google Scholar 

  19. Y.-C. Chang, Y.-H. Wang, Resistive switching behavior in gelatin thin films for nonvolatile memory application. ACS Appl Mater Interfaces 6(8), 5413–5421 (2014)

    Article  Google Scholar 

  20. Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 5, 10022 (2015)

  21. X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl Mater Interfaces 8(17), 10954–10960 (2016)

    Article  Google Scholar 

  22. M.K. Hota, M.K. Bera, B. Kundu, S.C. Kundu, C.K. Maiti, A natural silk fibroin protein-based transparent bio-Memristor. Adv Funct Mater 22(21), 4493–4499 (2012)

    Article  Google Scholar 

  23. C. Mukherjee, M. Hota, D. Naskar, S. Kundu, C. Maiti, Resistive switching in natural silk fibroin protein-based bio-memristors. Phys Status Solidi A 210(9), 1797–1805 (2013)

    Google Scholar 

  24. B. Sun, D. Liang, X. Li, P. Chen, Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27(4), 3957–3962 (2016)

    Article  Google Scholar 

  25. H. Wang, B. Zhu, X. Ma, Y. Hao, X. Chen, Physically transient resistive switching memory based on silk protein. Small 12(20), 2715–2719 (2016)

    Article  Google Scholar 

  26. F. Meng, L. Jiang, K. Zheng, C.F. Goh, S. Lim, H.H. Hng, J. Ma, F. Boey, X. Chen, Protein-Based Memristive Nanodevices. Small 7(21), 3016–3020 (2011)

    Article  Google Scholar 

  27. Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe Vera-based memory devices. Phys Chem Chem Phys 17(40), 26833–26853 (2015)

    Article  Google Scholar 

  28. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnol 22(25), 254003 (2011)

  29. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc IEEE 100(6), 1951–1970 (2012)

    Article  Google Scholar 

  30. A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, Nanoscale cation motion in TaOx HfOx and TiOx memristive systems. Natl Nanotechnol 11(1), 67–74 (2016)

    Article  Google Scholar 

  31. M. Lübben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified Interface controls transition from VCM to ECM switching modes in ta/TaOx based Memristive devices. Adv Mater 27(40), 6202–6207 (2015)

    Article  Google Scholar 

  32. H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98(12), 2237–2251 (2010)

    Article  Google Scholar 

  33. H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Sericin for resistance switching device with multilevel nonvolatile memory. Adv Mater 25(38), 5498–5503 (2013)

    Article  Google Scholar 

  34. C. Tan, Z. Liu, W. Huang, H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44(9), 2615–2628 (2015)

    Article  Google Scholar 

  35. C. Muthu, S. Agarwal, A. Vijayan, P. Hazra, K.B. Jinesh, V.C. Nair, Hybrid Perovskite Nanoparticles for High-Performance Resistive Random Access Memory Devices: Control of Operational Parameters through Chloride Doping. Adv Mater Interfaces 3(18), 1600092 (2016)

  36. J.-W. Lee, W.-J. Cho, Fabrication of resistive switching memory based on solution processed PMMA-HfO x blended thin films. Semicond Sci Technol 32(2), 025009 (2017)

    Article  Google Scholar 

  37. D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett 10(7), 2441–2447 (2010)

    Article  Google Scholar 

  38. H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices. Adv. Funct. Mater. 25 (25), 3825-3831 (2015)

  39. V.L. Finkenstadt, Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6), 735–745 (2005)

    Article  Google Scholar 

  40. Y. Wan, B. Peppley, K.A. Creber, V.T. Bui, E. Halliop, Preliminary evaluation of an alkaline chitosan-based membrane fuel cell. J Power Sources 162(1), 105–113 (2006)

    Article  Google Scholar 

  41. L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014)

  42. C. Zhong, Y. Deng, A.F. Roudsari, A. Kapetanovic, M. Anantram, M. Rolandi, A polysaccharide bioprotonic field-effect transistor. Nat Commun 2, 476 (2011)

    Article  Google Scholar 

  43. E. Guibal, Interactions of metal ions with chitosan-based sorbents: A review. Sep Purif Technol 38(1), 43–74 (2004)

    Article  Google Scholar 

  44. C.-W. Liew, S. Ramesh, K. Ramesh, A. Arof, Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5), 1869–1875 (2012)

    Article  Google Scholar 

  45. A. Smits, P. Kruiskamp, J. Van Soest, J. Vliegenthart, Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy. Carbohydr Polym 53(4), 409–416 (2003)

    Article  Google Scholar 

  46. M. Kumar, T. Tiwari, N. Srivastava, Electrical transport behaviour of bio-polymer electrolyte system: Potato starch+ ammonium iodide. Carbohydr Polym 88(1), 54–60 (2012)

    Article  Google Scholar 

  47. V. Finkenstadt, J. Willett, Electroactive materials composed of starch. J Polym Environ 12(2), 43–46 (2004)

    Article  Google Scholar 

  48. D. Topgaard, O. Söderman, Self-diffusion in two-and three-dimensional powders of anisotropic domains: An NMR study of the diffusion of water in cellulose and starch. J Phys Chem B 106(46), 11887–11892 (2002)

    Article  Google Scholar 

  49. S. Santacruz, C. Rivadeneira, M. Castro, Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocoll 49, 89–94 (2015)

    Article  Google Scholar 

  50. B. Cho, S. Song, Y. Ji, T.W. Kim, T. Lee, Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv Funct Mater 21(15), 2806–2829 (2011)

    Article  Google Scholar 

  51. B. Zeng, D. Xu, M. Tang, Y. Xiao, Y. Zhou, R. Xiong, Z. Li, Y. Zhou, Improvement of resistive switching performances via an amorphous ZrO2 layer formation in TiO2-based forming-free resistive random access memory. J Appl Phys 116(12), 124514 (2014)

    Article  Google Scholar 

  52. S. Mondal, J.-L. Her, F.-H. Chen, S.-J. Shih, T.-M. Pan, Improved resistance switching characteristics in Ti-doped for resistive nonvolatile memory devices. Elect Device Lett, IEEE 33(7), 1069–1071 (2012)

    Article  Google Scholar 

  53. P. Feng, C. Chao, Z.-s. Wang, Y.-c. Yang, Y. Jing, Z. Fei, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress Natl Sci: Mater Intern 20, 1–15 (2010)

    Article  Google Scholar 

  54. D. Shang, Q. Wang, L. Chen, R. Dong, X. Li, W. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag∕ La 0.7 Ca 0.3 MnO 3∕ Pt heterostructures. Phys Rev B 73(24), 245427 (2006)

    Article  Google Scholar 

  55. S. Chithiravel, K. Krishnamoorthy, S. Asha, Structure-Property Relationship in Charge Transporting Behaviour of Room Temperature Liquid Crystalline Perylenebisimides. J. Mater. Chem. C, (46), 9882-91 (2014)

  56. Y.H. Liu, L.Q. Zhu, P. Feng, Y. Shi, Q. Wan, Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 27(37), 5599–5604 (2015)

    Article  Google Scholar 

  57. K.M. Dang, R. Yoksan, Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115, 575–581 (2015)

    Article  Google Scholar 

  58. L. Pender, R. Fleming, Memory switching in glow discharge polymerized thin films. J Appl Phys 46(8), 3426–3431 (1975)

    Article  Google Scholar 

  59. A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1), 28–35 (2010)

    Article  Google Scholar 

  60. M. Nogi, H. Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10), 1849–1852 (2008)

    Article  Google Scholar 

  61. W.J. Hyun, O.O. Park, B.D. Chin, Foldable graphene electronic circuits based on paper substrates. Adv Mater 25(34), 4729–4734 (2013)

    Article  Google Scholar 

  62. M. Nogi, N. Komoda, K. Otsuka, K. Suganuma, Foldable nanopaper antennas for origami electronics. Nano 5(10), 4395–4399 (2013)

    Google Scholar 

  63. Y.-S. Chen, M.-Y. Hong, G.S. Huang, A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7(3), 197–203 (2012)

    Article  Google Scholar 

  64. G. Wu, P. Feng, X. Wan, L. Zhu, Y. Shi, Q. Wan, Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 6, 23578 (2016)

  65. B.J. Klotz, D. Gawlitta, A.J. Rosenberg, J. Malda, F.P. Melchels, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol 34(5), 394–407 (2016)

    Article  Google Scholar 

  66. R. Soliva-Fortuny, A. Balasa, D. Knorr, O. Martín-Belloso, Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci Technol 20(11), 544–556 (2009)

    Article  Google Scholar 

  67. J.W. Chang, C.G. Wang, C.Y. Huang, T.D. Tsai, T.F. Guo, T.C. Wen, Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 23(35), 4077–4081 (2011)

    Article  Google Scholar 

  68. S.-J. Kim, D.-B. Jeon, J.-H. Park, M.-K. Ryu, J.-H. Yang, C.-S. Hwang, G.-H. Kim, S.-M. Yoon, Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide Semiconductor Channel on eco-friendly paper substrate. ACS Appl Mater Interfaces 7(8), 4869–4874 (2015)

    Article  Google Scholar 

  69. B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  70. J.A. Hagen, W. Li, A. Steckl, J. Grote, Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88(17), 171109, 2006

  71. S. Qin, R. Dong, X. Yan, Q. Du, A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron., 22, 147-153 (2015)

  72. E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys., 162 20-30 (2015)

  73. K.J. Waldron, J.C. Rutherford, D. Ford, N.J. Robinson, Metalloproteins and metal sensing. Nature, 460 (7257), 823-830 (2009)

  74. I. Yamashita, K. Iwahori, S. Kumagai, Ferritin in the field of nanodevices. Biochim. Biophys Acta (BBA)-General Subjects, 1800 (8), 846-857 (2010)

  75. F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Bioengineered tunable memristor based on protein nanocage. Small, 10 (2), 277-283 (2014)

  76. S. Takeda, H. Yoshimura, S. Endo, T. Takahashi, K. Nagayama, Control of crystal forms of apoferritin by site-directed mutagenesis. Proteins: Structure, Function, and Bioinformatics, 23 (4), 548-556 (1995)

  77. C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, R.-W. Li, Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem Commun. 52(26), 4828-4831 (2016)

  78. B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Silk fibroin for flexible electronic devices. J. Adv. Mater. 28(22), 4250-65 (2015)

  79. Y.-Q. Zhang, Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 20(2), 91-100 (2002)

  80. C. Jiang, X. Wang, R. Gunawidjaja, Y.H. Lin, M.K. Gupta, D.L. Kaplan, R.R. Naik, V.V. Tsukruk, Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17(13), 2229-2237 (2007)

  81. S.W. Hwang, S.K. Kang, X. Huang, M.A. Brenckle, F.G. Omenetto, J. Rogers, Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 27(1), 47-52 (2015)

  82. R.M. Touyz, Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Phys Heart Circ Phys. 294 (3), H1103-H1118 (2008)

  83. D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nature protocols. 6(10), 1612-1631 (2011)

  84. Y. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K.-Y. Jen, H.C. Ko, T.-W. Kim, Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Commun, 4, 2707 (2013)

  85. M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics. 7(10), 811-816 (2013)

  86. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, An ultra-lightweight design for imperceptible plastic electronics. Nature. 499(7459), 458-463 (2013)

  87. M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012)

  88. S.-K. Kang, R.K. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Bioresorbable silicon electronic sensors for the brain. Nature. 530(7588), 71-76 (2016)

  89. Y. Cai, J. Tan, L. YeFan, M. Lin, R. Huang, A flexible organic resistance memory device for wearable biomedical applications. Nanotechnol. 27(27), 275206 (2016)

  90. B. Hu, X. Zhu, X. Chen, L. Pan, S. Peng, Y. Wu, J. Shang, G. Liu, Q. Yan, R.-W. Li, A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 134 (42), 17408-17411 (2012)

  91. S.-Y. Wang, D.-Y. Lee, T.-Y. Huang, J.-W. Wu, T.-Y. Tseng, Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer. Nanotechnol, 21 (49), 495201 (2010)

  92. S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan, Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology. 24(33), 335201 (2013)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2016M3D1A1027663 and NRF-2015R1A2A1A15055918). This work was also supported by the Future Semiconductor Device Technology Development Program (10045226) funded by the Ministry of Trade, Industry & Energy (MOTIE)/Korea Semiconductor Research Consortium (KSRC). In addition, this work was partially supported by the Brain Korea 21 PLUS project (Center for Creative Industrial Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Sik Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeis-Hosseini, N., Lee, JS. Resistive switching memory using biomaterials. J Electroceram 39, 223–238 (2017). https://doi.org/10.1007/s10832-017-0104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0104-z

Keywords

Navigation