Skip to main content
Log in

Electro-chemo-mechanical studies of perovskite-structured mixed ionic-electronic conducting SrSn1-xFexO3-x/2+δ part II: Electrical conductivity and cathode performance

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The bulk electrical conductivity of the mixed ionic-electronic conducting perovskite-structured SrSn1-xFexO3-x/2+δ (SSF) was measured to examine how changes in defect chemistry and electronic band structure associated with the substitution of Ti by Sn impact defect charge carrier density and ultimately electrode performance. These results complement a defect chemical model for SSF investigated and reported in Part I of this study. The electrical properties of SSF were found not to differ significantly from the corresponding composition in SrTi1-xFexO3-x/2+δ (STF). It is believed that Fe dominates the character of the valence and conduction bands and thus governs the electronic properties in SSF. Though slightly shifted in energy due to the larger size of Sn, the defect equilibria and therefore the electrical conductivity of SSF were found to be largely dominated by Fe and thus differed only in a limited way from that in STF. Key kinetic parameters obtained include the migration enthalpy of oxygen vacancies (0.772 ± 0.204 eV), the activation energy of area-specific-resistance for oxygen exchange (1.65 ± 0.03 eV) and the magnitudes of electron (0.0002 ± 0.00005 cm2/V∙s) and hole (0.0037 ± 0.0015 cm2/V∙s) mobilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Jung, H.L. Tuller, A new model describing solid oxide fuel cell cathode kinetics: Model thin film SrTi1-xFexO3-δ mixed conducting oxides–a case study. Adv. Energy Mater. 1, 1184–1191 (2011)

    Article  Google Scholar 

  2. A. Rothschild, W. Menesklou, H.L. Tuller, E. Ivers-Tiffée, Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-y solid solutions. Chem. Mater. 18(16), 3651–3659 (2006)

    Article  Google Scholar 

  3. C.S. Kim, S.R. Bishop, N.H. Perry, H.L. Tuller, Electro-chemo-mechanical studies of perovskite-structured mixed ionic-electronic conducting SrSn1-xFexO3-x/2+δ part I: Defect chemistry. J. Electroceram. 38(1), 74–80 (2017)

  4. H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.G. Jeon, W.J. Lee, H.S. Mun, K.T. Hong, J. Yu, K. Char, K.H. Kim, Physical properties of transparent perovskite oxides (Ba,La)SnO 3 with high electrical mobility at room temperature. Phys. Rev. B - Condens. Matter Mater. Phys. 86(16), 1–9 (2012)

    Google Scholar 

  5. D.J. Singh, D.A. Papaconstantopoulos, J.P. Julien, F. Cyrot-Lackmann, Electronic structure of Ba(Sn,Sb) O3: Absence of superconductivity. Phys. Rev. B 44(17), 9519–9523 (1991)

    Article  Google Scholar 

  6. V. Thangadurai, P. Schmid Beurmann, W. Weppner, Mixed oxide ion and electronic conductivity in perovskite-type SrSnO3 by Fe substitution. Mater. Sci. Eng. B 100(1), 18–22 (2003)

    Article  Google Scholar 

  7. V. Thangadurai, R.A. Huggins, W. Weppner, Use of simple ac technique to determine the ionic and electronic conductivities in pure and Fe-substituted SrSnO3 perovskites. J. Power Sources 108(1–2), 64–69 (2002)

    Article  Google Scholar 

  8. M. Kuhn, J.J. Kim, S.R. Bishop, H.L. Tuller, Oxygen Nonstoichiometry and defect chemistry of perovskite-structured BaxSr1– xTi1–yFeyO3–y/2+δ solid solutions. Chem. Mater. 25(15), 2970–2975 (2013)

    Article  Google Scholar 

  9. K.S. Roh, K.H. Ryu, C.H. Yo, Nonstoichiometry and physical properties of the SrSn1−xFexO3−ySystem. J. Solid State Chem. 142(2), 288–293 (1999)

    Article  Google Scholar 

  10. A. Rothschild, S. J. Litzelman, H. L. Tuller, W. Menesklou, T. Schneider, and E. Ivers-Tiffée, Temperature-independent resistive oxygen sensors based on SrTi1-xFexO3-δ solid solutions. Sensors Actuators, B Chem., vol. 108, no. 1–2 SPEC. ISS., pp. 223–230, 2005.

  11. D. Chen, S.R. Bishop, H.L. Tuller, Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. J. Electroceram. 28(1), 62–69 (2012)

    Article  Google Scholar 

  12. H.L. Tuller, A.S. Nowick, Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38(8), 859–867 (1977)

    Article  Google Scholar 

  13. C.G. Fonstad, R.H. Rediker, Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42(7), 2911–2918 (1971)

    Article  Google Scholar 

  14. Q. Liu, H. Li, B. Li, W. Wang, Q. Liu, Y. Zhang, and J. Dai, “Structure and band gap engineering of Fe-doped SrSnO 3 epitaxial films,” EPL (Europhysics Lett., vol. 108, no. 3, p. 37003, 2014.

  15. V. Metlenko, W. Jung, S.R. Bishop, H.L. Tuller, R.A. De Souza, Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1-yFeyO3-δ. Phys. Chem. Chem. Phys. 18(42), 29495–29505 (2016)

  16. M. Cherry, M.S. Islam, C.R.A. Catlow, Oxygen ion migration in perovskite-type oxides. J. Solid State Chem. 118(1), 125–132 (1995)

    Article  Google Scholar 

  17. F. Baumann, J. Fleig, H. Habermeier, J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State Ionics 177(11–12), 1071–1081 (2006)

    Article  Google Scholar 

  18. W. Jung, H.L. Tuller, Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ. Sci. 5(1), 5370 (2012)

    Article  Google Scholar 

  19. C. Körber, A. Wachau, P. Agoston, K. Albe, A. Klein, Self-limited oxygen exchange kinetics at SnO2 surfaces. Phys. Chem. Chem. Phys. 13(8), 3223–3226 (2011)

    Article  Google Scholar 

  20. W. Lee, J.W. Han, Y. Chen, Z. Cai, B. Yildiz, Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135(21), 7909–7925 (2013)

    Article  Google Scholar 

  21. K.-C. Chang, P. Fuoss, Y. Hoydoo, S. Gopalan, D. Ding, L. Meilin, B. Yildiz, and K. Gerdes, Recent Solid Oxide Fuel Cell Cathode Studies, p. 159, 2013.

  22. N. Caillol, M. Pijolat, E. Siebert, Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Appl. Surf. Sci. 253(10), 4641–4648 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out as a part of the activity of the Skoltech-MIT Center for Electrochemical Energy Storage. Some of the concepts applied in this study on SSF were developed previously in research supported by the National Science Foundation under award number DMR-1507047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Sub Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.S., Bishop, S.R. & Tuller, H.L. Electro-chemo-mechanical studies of perovskite-structured mixed ionic-electronic conducting SrSn1-xFexO3-x/2+δ part II: Electrical conductivity and cathode performance. J Electroceram 40, 57–64 (2018). https://doi.org/10.1007/s10832-017-0098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0098-6

Keywords

Navigation