Skip to main content
Log in

Ion transport in dual-phase SrFe1−xТаxO3−δ (x = 0.03 − 0.10): effects of redox cycling

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The incorporation of tantalum cations in mixed-conducting SrFe1-xTaxO3−δ (x = 0.03 − 0.10) results in the formation of single cubic perovskite-like phases in oxidizing atmospheres while under reducing conditions phase separation is observed, accompanied with an appearance of brownmillerite-type nanodomains on the background of the perovskite-like matrix. For SrFe0.97Ta0.03O3−δ after reduction, the x-ray and electron diffraction studies combined with transmission electron microscopy evidence the formation of approximately 30 vol.% brownmillerite phase with an average domain size of 20–40 nm. The oxygen partial pressure dependencies of the total conductivity in the \( {p}_{{\mathrm{O}}_2} \) range from 10−20 to 0.5 atm at 700–950 °C show that the electron transport parameters remain virtually independent on the dopant content and domain structure. Contrary to the materials with higher dopant content, however, the ion conduction in SrFe0.97Ta0.03O3−δ tends to substantially increase on redox cycling. This behavior was attributed to the brownmillerite domain disintegration and rearrangement, induced by cyclic formation and disappearance of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maier J (1995) Program Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  2. Chadwick AV (2007) Phys Stat Solid A 204:631–641

    Article  CAS  Google Scholar 

  3. Kilner JA (2008) Nature Mater 7:838–839

    Article  CAS  Google Scholar 

  4. Uvarov NF (2011) J Solid State Electrochem 15:367–389

    Article  CAS  Google Scholar 

  5. Kharton VV (ed) (2011) Solid state electrochemistry II: electrodes, interfaces and ceramic membranes. Wiley-VCH, Weinheim

    Google Scholar 

  6. Uvarov NF, Ulihin AS, Slobodyuk AB, Kavun VY, Kirik SD (2008) ECS Trans 11:9–17

    Article  CAS  Google Scholar 

  7. Grenier JC, Darriet J, Pouchard M, Hagenmuller P (1976) Mat Res Bull 11:1219–1226

    Article  CAS  Google Scholar 

  8. González-Calbet JM, Vallet-Regi M, Alario-Franco MA, Grenier JC (1983) Mat Res Bull 18:285–292

    Article  Google Scholar 

  9. Alario-Franco MA, Gonzlez-Calbet JM, Vallet-Regi M, Grenier JC (1983) J Solid State Chem 49:219–231

    Article  CAS  Google Scholar 

  10. Nakayama N, Takano M, Inamura S, Nakanishi N, Kosuge K (1987) J Solid State Chem 71:403–417

    Article  CAS  Google Scholar 

  11. Liu D, Yao X, Smyth DM, Bhalla AS, Cross LE (1993) J Appl Phys 74:3345–3356

    Article  CAS  Google Scholar 

  12. Schmidt M, Campbell SJ (2001) J Solid State Chem 156:292–304

    Article  CAS  Google Scholar 

  13. Patrakeev MV, Kharton VV, Bakhteeva YA, Shaula AL, Leonidov IA, Kozhevnikov VL, Naumovich EN, Yaremchenko AA, Marques FMB (2006) Solid State Sci 8:476–487

    Article  CAS  Google Scholar 

  14. Kharton VV, Patrakeev MV, Waerenborgh JC, Sobyanin VA, Veniaminov SA, Yaremchenko AA, Gaczyński P, Belyaev VD, Semin GL, Frade JR (2005) Solid State Sci 7:1344–1352

    Article  CAS  Google Scholar 

  15. Markov AA, Shalaeva EV, Tyutyunnik AP, Kuchin VV, Patrakeev MV, Leonidov IA, Kozhevnikov VL (2013) J Solid State Chem 197:191–197

    Article  CAS  Google Scholar 

  16. Patrakeev MV, Markov AA, Shalaeva EV, Tyutyunnik AP, Tsipis EV, Waerenborgh JC, Kharton VV, Leonidov IA, Kozhevnikov VL (2013) Solid State Ionics 244:17–22

    Article  CAS  Google Scholar 

  17. Kharton VV, Kovalevsky AV, Tsipis EV, Viskup AP, Naumovich EN, Jurado JR, Frade JR (2002) J Solid State Electrochem 7:30–36

    Article  CAS  Google Scholar 

  18. Leonidov IA, Kozhevnikov VL, Mitberg EB, Patrakeev MV, Kharton VV, Marques FMB (2001) J Mater Chem 11:1201–1208

    Article  CAS  Google Scholar 

  19. Patrakeev MV, Bahteeva JA, Mitberg EB, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (2003) J Solid State Chem 172:219–231

    Article  CAS  Google Scholar 

  20. Adler P, Lebon A, Damljanović V, Ulrich C, Bernhard C, Boris AV, Maljuk A, Lin CT, Keimer B (2006) Phys Rev B 73:094451–094466

    Article  Google Scholar 

  21. Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, Dordrecht-Heidelberg-London-New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of this work from the Russian Foundation for Basic Research (projects 13-03-00931 and 14-29-04042), the regional programs of the Ural Branch of RAS (12-Y-3-1005), the Ministry of Education and Science of the Russian Federation (project 14.B25.31.0018), and the FCT, Portugal (project PTDC/CTM-CER/114561/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Patrakeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaeva, E.V., Patrakeev, M.V., Markov, A.A. et al. Ion transport in dual-phase SrFe1−xТаxO3−δ (x = 0.03 − 0.10): effects of redox cycling. J Solid State Electrochem 19, 841–849 (2015). https://doi.org/10.1007/s10008-014-2698-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2698-2

Keywords

Navigation