Skip to main content
Log in

Preparation of TiO2 thin films deposited from highly dense targets with multi-oxide glass doping

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Glass doped TiO2 (GTO) thin films were deposited by radio frequency (RF) magnetron sputter at room temperature and annealed in a reductive atmosphere containing 90 % N2 and 10 % H2. Highly dense TiO2 ceramic mixed with glass consisting of multi-metal oxides (as a sintering aid) was used as the sputtering target. This sintering aid allows low temperature densification of TiO2 target through a liquid phase wetting mechanism, and also works as a doping resource. XRD and FESEM were carried out to characterize the microstructure of the GTO films and the results reveal that the doping of multi-metal ions enhances the crystallization and increases the grain size of TiO2 films. TEM analysis also showed that these metal ions were dissolved into TiO2 lattices. The electrical and optical properties of TiO2 thin films at different glass concentrations were evaluated and compared to the films merely doped with MoO3. The electrical resistivity of the GTO films reaches 9.1 × 10–4 Ω·cm at 2 wt% glass doping, corresponding to a carrier density of 8.9 x 1020 cm-3 and a mobility of 7.1 cm2/Vs. Meanwhile, the electrical resistivity of the TiO2 film doped with glass was found to be lower than that of MoO3-doped film. This was mainly attributed to the increase in carrier concentration by double doping effect of glass. The optical band gap of the GTO films ranged from 3.34 to 3.42 eV, which is greater than that of the un-doped TiO2 film. This blue shift of approximately 0.18 eV was due to the Burstein-Moss effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Nakamura, M. Kamiya, I. Takano, Y. Sawada, E. Nakazawa, Surf. Coat. Technol. 103-104, p83 (1998)

    Article  Google Scholar 

  2. H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore and D. B. Chrisey, J. Appl. Phys., 88(10), 2000, P 6021.

  3. N. Taga, H. Odaka, Y. Shigesato, I. Yasui, M. Kamei, and T. E. Haynes, J. Appl. Phys., 80, 1996, p 978.

  4. A. Salehi, Thin Solid Film, 324, 1998, p 214.

  5. K. Utsumi, O. Matsunaga, and T. Takahata, Thin Solid Film, 334, 1998, p 30.

  6. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  7. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, Go kinoda, Y. Hirose, T. Shimada, T. Hasegawa. Appl. Phys. Lett. 86, 252101 (2005)

    Article  Google Scholar 

  8. T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada, and T. Hasegawa, Jpn. J. Appl. Phys., Part 2, 44, L1063 (2005).

  9. Y. Hirose, N. Yamada, S. Nakao, T. Hitosugi, T. Shimada, T. Hasegawa, Phys. Rev. B 79, 165108 (2009)

    Article  Google Scholar 

  10. H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa, K. Yamashita, J. Chem. Phys. 131, 034702 (2009)

    Article  Google Scholar 

  11. E. Yagi, R. R. Hasiguti, M. Aono, Phys. Rev. B 54, 7945–7956 (1996)

    Article  Google Scholar 

  12. J. W. DeFord, O. W. Johnson, J. Appl, Physiologist 54, 889–891 (1983)

    Google Scholar 

  13. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Levy, J. Appl, Physiologist 75, 633–635 (1994)

    Google Scholar 

  14. A. Bernasik, M. Radecka, M. Rekas, M. Sloma, Appl. Surf. Sci. 66, 240–245 (1993)

    Article  Google Scholar 

  15. T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada, T. Hasegawa, Jpn. J. Appl. Phys. 44, L1063–L1065 (2005)

    Article  Google Scholar 

  16. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, Y. Hirose, G. Kinoda, K. Inaba, T. Shimada, T. Hasegawa, Thin Solid Films 496, 157–159 (2006)

    Article  Google Scholar 

  17. T. Hitosugi, A. Ueda, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, T. Hasegawa, Jpn. J. Appl. Phys. 46, L86–L88 (2007)

    Article  Google Scholar 

  18. K. Tonooka, T. W. Chiu, N. Kikuchi, Appl. Surf. Sci. 255, 9695–9698 (2009)

    Article  Google Scholar 

  19. T. Hitosugi, N. Yamada, N. L. H. Hoang, J. Kasai, S. Nakao, T. Shimada, T. Hasegawa, Thin Solid Films 517, 3106–3109 (2009)

    Article  Google Scholar 

  20. C. J. Tavares, M. V. Castro, E. S. Marins, A. P. Samantilleke, S. Ferdov, L. Rebouta, M. Benelmekki, M. F. Cerqueira, P. Alpuim, E. Xuriguera, J. P. Rivière, D. Eyidi, M. F. Beaufort, Thin Solid Films 520, 2514–2519 (2012)

    Article  Google Scholar 

  21. T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, T. Hasegawa, Thin Solid Films 516, 5750–5753 (2008)

    Article  Google Scholar 

  22. K. Utsumi, O. Matsunaga, Tsutomu takahata. Thin Solid Films 334, 30–34 (1998)

    Article  Google Scholar 

  23. N. Nadaud, M. Nanot, P. Boch, J. Am. Ceram. Soc., 77, 843-, (1994).

  24. B.L. Gehman, S. Jonsson, T. Rudolph, M. Scherer, M. Weight, R. Werner, Thin solid films, 220, 333-, (1992).

  25. T. Vojnovich, R.J. Bartton, Ceram. Bull., 54, 216-, (1992).

  26. B. Houng, S. J. J. Wu, S. H. Lu, W. C. Chien, Ceram. Int. 40, 3731–3736 (2014)

    Article  Google Scholar 

  27. R. D. Shannon, Acta Crystallogr. A32, 751–767 (1976)

    Article  Google Scholar 

  28. D. M. Smyth, The defect chemistry of metal oxides (Oxford University Press, 2000)

  29. M. Mizuhashi, Thin Solid Films 70, 91–100 (1980)

    Article  Google Scholar 

  30. S. A. Agnihotry, K. K. Saini, T. K. Saxena, K. C. Nagpal, S. Chandra, J. Phys. D. Appl. Phys. 18, 2087–2096 (1985)

    Article  Google Scholar 

  31. H. Nogichi, J. Sakata, Phys. D: Appl. Phys. 14, 1523–1529 (1981)

    Article  Google Scholar 

  32. P. S. Kireev, Semiconductor physics (Mir, Moscow, 1978)

    Google Scholar 

  33. J. E. Morris, M. I. Ridge, C. A. Bishop, R. P. Howson, J. Appl, Physiologist 51, 1847–1849 (1980)

    Google Scholar 

  34. S. Chaudhuri, J. Bhattacharyya, A. K. Pal, Thin Solid Films 148, 279–284 (1987)

    Article  Google Scholar 

  35. M. Mizuhashi, Jpn. J. Appl. Phys. Part 1 22, 615–620 (1983)

    Article  Google Scholar 

  36. R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl, Physiologist 83, 2631–2645 (1998)

    Google Scholar 

  37. J. M. Philips, J. Kwo, G. A. Thomas, A. S. Carter, R. J. Cava, S. Y. Hou, J. J. Krajewski, J. H. Marshall, W. F. Peck, D. H. Rapkine, R. B. van Dover, Appl. Phys. Lett. 65, 115–117 (1994)

    Article  Google Scholar 

  38. H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, Semiconducting transparent thin films (Institute of Physics Publishing, Philadelphia, 1995)

    Google Scholar 

  39. T. S. Moss, Optical property of semiconductor (Butterworths, London, 1959)

    Google Scholar 

  40. S. F. Wang, Y. F. Hsu, Y. S. Lee, Ceram. Int. 32, 121–125 (2006)

    Article  Google Scholar 

  41. W. A. Badway, R. S. Momtaz, E. M. Elgiar, Phys. Status Solidi 118, 197–202 (1990)

    Article  Google Scholar 

  42. D. Mardare, P. Hones, Mater. Sci. Eng. B68, 42–47 (1999)

    Article  Google Scholar 

  43. B. Houng, C. C. Liu, M. T. Hung, Ceram. Int. 39, 3669–3676 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Science of Council of Taiwan and ISU to support this work under GRANT No. 101-2221-E-214-029 and 101-2815-C-214-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boen Houng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houng, B., Shih, Y.H., Lu, S.H. et al. Preparation of TiO2 thin films deposited from highly dense targets with multi-oxide glass doping. J Electroceram 36, 87–93 (2016). https://doi.org/10.1007/s10832-015-0011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-015-0011-0

Keywords

Navigation