Skip to main content
Log in

A deterministic Wigner transport equation solver with infinite correlation length

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We propose a new formulation of the Wigner transport equation (WTE) with infinite correlation length. Since the maximum correlation length is not limited to a finite value, there is no uncertainty in the simulation results owing to the finite integral range of the nonlocal potential term. For general and efficient simulation, the proposed WTE formulation is solved self-consistently with the Poisson equation through the finite volume method and the fully coupled Newton–Raphson scheme. Through this, we implemented a quantum transport steady state and transient simulator with excellent convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jin, S., Tang, T., Fischetti, M.V.: Simulation of silicon nanowire transistors using Boltzmann transport equation under relaxation time approximation. IEEE Trans. Electron Devices 55(3), 727–736 (2008). https://doi.org/10.1109/TED.2007.913560

    Article  Google Scholar 

  2. Hong, S.-M., Jungemann, C.: A fully coupled scheme for a Boltzmann–Poisson equation solver based on a spherical harmonics expansion. J. Comput. Electron. 8, 225–241 (2009). https://doi.org/10.1007/s10825-009-0294-y

    Article  Google Scholar 

  3. Cha, S., Hong, S.-M.: Theoretical study of electron transport properties in GaN-based HEMTs using a deterministic multi-subband Boltzmann transport equation solver. IEEE Trans. Electron Devices 66(9), 3740–3747 (2019). https://doi.org/10.1109/TED.2019.2926857

    Article  Google Scholar 

  4. Jungemann, C., Pham, A.T., Meinerzhagen, B., Ringhofer, C., Bollhofer, M.: Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2212207

    Article  Google Scholar 

  5. Wang, J., Lundstrom, M.: Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? In: Digest. International Electron Devices Meeting, pp. 707–710 (2002). https://doi.org/10.1109/IEDM.2002.1175936.

  6. Yadav, D., Nair, D.R.: Impact of source to drain tunneling on the ballistic performance of Si, Ge, GaSb, and GeSn nanowire p-MOSFETs. IEEE J. Electron. Devices Soc. 8, 308–315 (2020). https://doi.org/10.1109/JEDS.2020.2980633

    Article  Google Scholar 

  7. Kao, K.-H., Wu, T.R., Chen, H.-L., Lee, W.-J., Chen, N.-Y., Ma, W.C.-Y., Su, C.-J., Lee, Y.-J.: Subthreshold swing saturation of nanoscale MOSFETs due to source-to-drain tunneling at cryogenic temperatures. IEEE Electron. Device Lett. 41(9), 1296–1299 (2020). https://doi.org/10.1109/LED.2020.3012033

    Article  Google Scholar 

  8. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics, p. 1962. Benjamin, New York (1962). https://doi.org/10.1201/9780429493218

    Book  MATH  Google Scholar 

  9. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  MATH  Google Scholar 

  10. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Modern Phys. 63, 215 (1990). https://doi.org/10.1103/RevModPhys.62.745

    Article  Google Scholar 

  11. Fischetti, M.V.: Theory of electron transport in small semiconductor devices using the Pauli master equation. J. Appl. Phys. 83, 270 (1998). https://doi.org/10.1063/1.367149

    Article  Google Scholar 

  12. Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901 (1999). https://doi.org/10.1103/PhysRevB.59.4901

    Article  Google Scholar 

  13. Stettler, M.A., et al.: Industrial TCAD: modeling atoms to chips. IEEE Trans. Electron Devices 68(11), 5350–5357 (2021). https://doi.org/10.1109/TED.2021.3076976

    Article  Google Scholar 

  14. Mahdi, P.: Numerical study of quantum transport in carbon nanotube-based transistors. dissertation, Institute for Microelectronics, Vienna University of Technology, Vienna (2007)

  15. Jin, S., Park, Y.J., Min, H.S.: A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions. J. Appl. Phys. 99, 123719 (2006). https://doi.org/10.1063/1.2206885

    Article  Google Scholar 

  16. Luisier, M., Klimeck, G.: Atomistic full-band simulation of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80, 155430 (2009). https://doi.org/10.1103/PhysRevB.80.155430

    Article  Google Scholar 

  17. Gunst, T., Markussen, T., Palsgaard, M.L., Stokbro, K., Brandbyge, M.: First-principles electron transport with phonon coupling: large scale at low cost. Phys. Rev. B 96, 161404 (2017). https://doi.org/10.1103/PhysRevB.96.161404

    Article  Google Scholar 

  18. Vyas, P.B., Van de Put, M.L., Fischetti, M.V.: Master-equation study of quantum transport in realistic semiconductor devices including electron-phonon and surface-roughness scattering. Phys. Rev. Appl. 13, 014067 (2020). https://doi.org/10.1103/PhysRevApplied.13.014067

    Article  Google Scholar 

  19. Pham, A.-T., Kin, S., Lu, Y., Park, H.-H., Choi, W., Pourghaderi, M.A., Kim, J., Kwon, U., Kim, D.: Simulations of self-heating effects in SiGe pFinFETs based on self-consistent solution of carrier/phonon BTE coupled system. In: 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, USA, 2018, pp. 145–148. https://doi.org/10.1109/SISPAD.2018.8551670

  20. Pourghaderi, M.A., Pham, A.-T., Kim, S., Chung, H., Jiang, Z., Ilatikhameneh, H., Park, H.-H., Jin, S., Kim, J., Chung, W.-Y., Kwon, U., Choi, W., Kim, D.S., Maeda, S.: Universal swing factor approach for performance analysis of logic nodes. In: 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 33.3.1–33.3.4, https://doi.org/10.1109/IEDM.2018.8614696

  21. Stanojević, Z., Strof, G., Baumgartner, O., Rzepa G., Karner, M.: Performance and leakage analysis of Si and Ge NWFETs using a combined subband BTE and WKB approach. In: 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kobe, Japan, 2020, pp. 63–66, https://doi.org/10.23919/SISPAD49475.2020.9241614

  22. Stanojević, Z., Tsai, C.-M., Strof, G., Mitterbauer, F., Baumgartner, O., Kernstock, C., Karner, M.: Nano device simulator—a practical subband-BTE solver for path-finding and DTCO. IEEE Trans. Electron Devices 68(11), 5400–5406 (2021). https://doi.org/10.1109/TED.2021.3079884

    Article  Google Scholar 

  23. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121–167 (1984). https://doi.org/10.1016/0370-1573(84)90160-1

    Article  MathSciNet  Google Scholar 

  24. Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67, 1033–1071 (2004). https://doi.org/10.1088/0034-4885/67/7/R01

    Article  Google Scholar 

  25. Nedjalkov, M., Vasileska, D., Ferry, D.K., Jacoboni, C., Ringhofer, C., Dimov, I., Palankovski, V.: Wigner transport models of the electron-phonon kinetics in quantum wires. Phys. Rev. B 74, 035311 (2006). https://doi.org/10.1103/PhysRevB.74.035311

    Article  Google Scholar 

  26. Rossi, F., Jacoboni, C., Nedjalkov, M.: A Monte Carlo solution of the Wigner transport equation. Semicond. Sci. Technol. 9, 934 (1994)

    Article  Google Scholar 

  27. Querlioz, D., Saint-Martin, J., Do, V.-N., Bournel, A., Dollfus, P.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5(6), 12 (2006). https://doi.org/10.1109/TNANO.2006.883477

    Article  Google Scholar 

  28. Barraud, S.: “Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110(9), 1 (2011). https://doi.org/10.1063/1.3654143

    Article  Google Scholar 

  29. Jiang, H., Cai, W., Tsu, R.: Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes. J. Comput. Phys. 230(5), 2031–2044 (2011). https://doi.org/10.1016/j.jcp.2010.12.002

    Article  MATH  Google Scholar 

  30. Yamada, Y., Tsuchiya, H., Ogawa, M.: Quantum transport simulation of silicon-nanowire transistors based on direct solution approach of the Wigner transport equation. IEEE Trans. Electron. Devices 56(7), 1396–1401 (2009). https://doi.org/10.1109/TED.2009.2021355

    Article  Google Scholar 

  31. Rosati, R., Dolcini, F., Iotti, R.C., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: Failure of the conventional boundary condition scheme. Phys. Rev. B 88, 035401 (2013). https://doi.org/10.1103/PhysRevB.88.035401

    Article  Google Scholar 

  32. Hong, S., Jang, J.: Transient simulation of semiconductor devices using a deterministic Boltzmann equation solver. IEEE J. Electron. Devices Soc. 6, 156–163 (2018). https://doi.org/10.1109/JEDS.2017.2780837

    Article  Google Scholar 

  33. Jin, S., Fischetti, M.V., Tang, T.-W.: Theoretical study of carrier transport in silicon nanowire transistors based on the multisubband Boltzmann transport equation. IEEE Trans. Electron. Devices 55(11), 2886–2897 (2008). https://doi.org/10.1109/TED.2008.2005172

    Article  Google Scholar 

  34. Iotti, R.C., Dolcini, F., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: Need for nonlocal scattering models. Phys. Rev. B 96, 115420 (2017). https://doi.org/10.1103/PhysRevB.96.115420

    Article  Google Scholar 

  35. Jonasson, O., Karimi, F., Knezevic, I.: Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix. J. Comput. Electron. 15, 1192–1205 (2016). https://doi.org/10.1007/s10825-016-0869-3

    Article  Google Scholar 

  36. Soleimanikahnoj, S., Jonasson, O., Karimi, F., et al.: Numerically efficient density-matrix technique for modeling electronic transport in mid-infrared quantum cascade lasers. J. Comput. Electron. 20, 280–309 (2021). https://doi.org/10.1007/s10825-020-01627-x

    Article  Google Scholar 

  37. Costolanski, A.S., Kelley, C.T.: Efficient solution of the wigner-poisson equations for modeling resonant tunneling diodes. IEEE Trans. Nanotechnol. 9(6), 708–715 (2010). https://doi.org/10.1109/TNANO.2010.2053214

    Article  Google Scholar 

  38. Jensen, K.L., Buot, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078 (1991). https://doi.org/10.1103/PhysRevLett.66.1078

    Article  Google Scholar 

  39. Zhao, P., Cui, H.L., Woolard, D.L.: Dynamical instabilities and I-V characteristics in resonant tunneling through double-barrier quantum well systems. Phys. Rev. B 63, 075302 (2001). https://doi.org/10.1103/PhysRevB.63.075302

    Article  Google Scholar 

  40. Biegel, B.A.: Wigner function simulation of intrinsic oscillations, hysteresis, and Bistability in resonant tunneling structures. In: Proceedings of SPIE 3277, Ultrafast Phenomena in Semiconductors, April. 1998. https://doi.org/10.1117/12.306152

  41. Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070 (1996). https://doi.org/10.1103/PhysRevB.54.8070

    Article  Google Scholar 

  42. Biegel, B.A., Plummer, J.D.: Applied bias slewing in transient Wigner function simulation of resonant tunneling diodes. IEEE Trans. Electron Devices 44(5), 733–737 (1997). https://doi.org/10.1109/16.568033

    Article  Google Scholar 

  43. Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979). https://doi.org/10.1016/0045-7825(79)90034-3

    Article  MATH  Google Scholar 

  44. Kosik, R., Cervenka, J., Kosina, H.: Numerical constraints and non-spatial open boundary conditions for the Wigner equation. J. Comput. Electron. 20(6), 2052–2061 (2021). https://doi.org/10.1007/s10825-021-01800-w

    Article  Google Scholar 

  45. Schulz, L., Schulz, D.: Complex absorbing potential formalism accounting for open boundary conditions within the Wigner transport equation. IEEE Trans. Nanotechnol. 18, 830–838 (2019). https://doi.org/10.1109/tnano.2019.2933307

    Article  Google Scholar 

  46. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11(10), 455–465 (1964). https://doi.org/10.1109/T-ED.1964.15364

    Article  Google Scholar 

  47. Zhibin Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 50(9), 1914–1925 (2003). https://doi.org/10.1109/TED.2003.816524

    Article  Google Scholar 

  48. Hirsbrunner, M.R., Philip, T.M., Basa, B., Kim, Y., Jip Park, M., Gilbert, M.J.: A review of modeling interacting transient phenomena with non-equilibrium Green functions. Rep Prog Phys. 82(4), 046001 (2019). https://doi.org/10.1088/1361-6633/aafe5f

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor, the late Prof. Byung Gook Park. I sincerely appreciate his precious advice and consistent encouragement during my Ph.D. course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Yeon Kim.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Wigner function in the on/off state is shown in more detail in Figs. 19 and 20. The figures show that the first subband has the largest Wigner function, and the rest has no significant effect on the solution. Also, the 3rd valley (t, t, l) shows the largest Wigner function and has the greatest influence on device characteristics. Interestingly, in on-state, the distribution of the Wigner function is quite different in all subbands.

Fig. 19
figure 19

Wigner function at a first and b second subband of the 1st valley (l, t, t). Wigner function at c first and d second subband of the 2nd valley (t, l, t). Wigner function at a first and b second subband of the 3rd valley (t, t, l). The gate length is 10 nm, body thickness is 3 nm, and EOT is 0.5 nm. Drain voltage is 0.4 V and gate voltage is 0 V (off-state)

Fig. 20
figure 20

Wigner function at a first and b second subband of the 1st valley (l, t, t). Wigner function at c first and d second subband of the 2nd valley (t, l, t). Wigner function at a first and b second subband of the 3rd valley (t, t, l). The gate length is 10 nm, body thickness is 3 nm, and EOT is 0.5 nm. Drain voltage is 0.4 V and gate voltage is 0.5 V (on-state)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.Y. A deterministic Wigner transport equation solver with infinite correlation length. J Comput Electron 22, 1377–1395 (2023). https://doi.org/10.1007/s10825-023-02079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02079-9

Keywords

Navigation