Skip to main content
Log in

Modified differential overlap factor and modal gain equalization criteria-based comparative analysis of 4M-EDFA 980;1480 nm towards identification of a unique erbium doping profile for the 4M-EDFA1480 nm system

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A four-mode erbium-doped fiber amplifier (4M-EDFA) system with \({\mathrm{LP}}_{01;980 \mathrm{nm}}\) and \({\mathrm{LP}}_{01;1480 \mathrm{nm}}\) pump wavelengths is explored analytically using a coupled mode equation and subsequently through simulations by implementing modified erbium-doped profile-based systems. We aim to reduce the inherent differential modal gain (DMG) and differential spectral gain (DSG) between signal modes \({\mathrm{LP}}_{01}, {\mathrm{LP}}_{11}, {\mathrm{LP}}_{21}\) and \({\mathrm{LP}}_{02}\) while maintaining high modal gain. For in-depth performance evaluation and comparison of 4M-\({\mathrm{EDFA}}_{980\, \mathrm{nm};1480\,\mathrm{nm}}\) systems, novel differential performance parameters are introduced and explored. Differential modal noise figure (DMNF) and differential spectral noise figure (DSNF) parameters quantify the impact of system amplified spontaneous emission. The conventional erbium ion inclusive transverse overlap factor is modified (\({\eta }_{\mathrm{sp}}\)) using a unit-less erbium ion profile over a scale of 0–1. Differential modal overlap factor (DMOF) and differential spectral overlap factor (DSOF) are shown to be strongly correlated with DMG and DSG, respectively, and prove to be more decisive performance evaluation parameters than \({\eta }_{\mathrm{sp}}\). Obtaining low DMOF and DSOF values with the 1480 nm pump prompts the investigation of 4M-\({\mathrm{EDFA}}_{1480\,\mathrm{nm}}\) with erbium ion profile variants: uniform \(N\left(r\right)\)= 1, \({N}_{\mathrm{inv}}\left(r\right)\) and \({N}_{\mathrm{opt} }(r)\). \({N}_{\mathrm{inv}}\left(r\right)\) is extracted from the inverse sum of the normalized signal intensity function. Subsequently, differential modal gain equalization criteria are used which aid in unique linearizing \({N}_{\mathrm{opt} }(r)\) profile identification. In the 4M-EDFA system, the highest values (in dB) of DMG, DSG, DMNF and DSNF are 13.295, 3.9717, 5.9996, 11.0649, respectively, for the 980 nm uniform erbium ion profile system. The proposed \({N}_{\mathrm{opt}}(r)\) profile significantly reduces these parameters (in dB) to 2.0558, 2.4997, 2.77 and 3.879, respectively, for the 1480 nm system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Richardson, D.J., Fini, J.M., Nelson, L.E.: Space division multiplexing in optical fibres. Nat. Photon. 7(5), 354–362 (2013)

    Article  Google Scholar 

  2. Zhu, B., et al.: Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber. In: National Fiber Optic Engineers Conference. Optica Publishing Group. PDPB7 (2011)

  3. Vigneswaran, D., Rajan, Singh, M., Malhotra, J.: System investigations of few-mode erbium-doped fiber amplifier (FM-EDFA) for vortex mode amplifications. J. Comput. Electron. 20(4), 1549–1559 (2021). https://doi.org/10.1007/s10825-021-01721-8

    Article  Google Scholar 

  4. Puttnam, B.J., et al.: High data-rate and long distance MCF transmission with 19-core C+L band cladding-pumped EDFA. J. Lightwave Technol. 38(1), 123–130 (2020). https://doi.org/10.1109/JLT.2019.2946879

    Article  Google Scholar 

  5. Chang, Y., et al.: Demonstration of an all-fiber cladding-pumped FM-EDFA with low differential modal gain. Opt. Laser Technol. 155, 108446 (2022). https://doi.org/10.1016/j.optlastec.2022.108446

    Article  Google Scholar 

  6. Kim, M.S., Kim, B.G., Bae, S.H., Chung, Y.C.: Effects of multi-level format in MMF system based on mode-field matched center-launching technique. IEEE Photon. Technol. Lett. 30(22), 1972–1975 (2018). https://doi.org/10.1109/LPT.2018.2873822

    Article  Google Scholar 

  7. Saitoh, K.: Few-mode multi-core fibres: weakly-coupling and randomly-coupling. In: 2020 European Conference on Optical Communications, pp. 1–4. IEEE (2020)

  8. Wakayama, Y., Soma, D., Beppu, S., Sumita, S., Igarashi, K., Tsuritani, T.: 266.1-Tbit/s transmission over 90.4-km 6-mode fiber with inline dual C-band 6-mode EDFA. J. Lightwave Technol. 37(2), 404–410 (2019). https://doi.org/10.1109/JLT.2018.2876730

    Article  Google Scholar 

  9. Salsi M., et al.: A six-mode erbium-doped fiber amplifier. In: European Conference and Exhibition on Optical Communication, Optical Society of America. Th-3 (2012)

  10. Zhu, J., et al.: Weakly-coupled MDM-WDM amplification and transmission based on compact FM-EDFA. J. Lightwave Technol. 38(18), 5163–5169 (2020). https://doi.org/10.1109/JLT.2020.3001008

    Article  Google Scholar 

  11. Bai, N., Ip, E., Wang, T., Li, G.: Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Opt. Express 19(17), 16601–16611 (2011)

    Article  Google Scholar 

  12. Qayoom, T., Qazi, G.: On the analysis and comparison of decoupled modal gain equalization systems for four-mode (4M)-EDFAs. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164498

    Article  Google Scholar 

  13. Gaur, A., Rastogi, V.: Design and analysis of annulus core few mode EDFA for modal gain equalization. IEEE Photon. Technol. Lett. 28(10), 1057–1060 (2016). https://doi.org/10.1109/LPT.2016.2528502

    Article  Google Scholar 

  14. Gaur, A., Rastogi, V.: Gain equalization of six mode groups using trench-assisted annular core EDFA. In: 2015 Workshop on Recent Advances in Photonics (WRAP), pp. 1–4. IEEE (2015)

  15. Ryf, R., et al.: 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Optical Fiber Communication Conference. Optical Society of America (2013)

  16. Ip, E.: Gain equalization for few-mode fiber amplifiers beyond two propagating mode groups. IEEE Photon. Technol. Lett. 24(21), 1933–1936 (2012). https://doi.org/10.1109/LPT.2012.2219521

    Article  Google Scholar 

  17. Qayoom, T., Qazi, G., Najeeb-ud-din, H.: Evolution of amplified spontaneous emission and characterization of an optimized two-mode EDFA system obtained from an extended analytical model. J. Comput. Electron. 19(4), 1660–1669 (2020). https://doi.org/10.1007/s10825-020-01566-7

    Article  Google Scholar 

  18. Kang, Q., et al.: Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration. Opt. Express 20(19), 20835 (2012). https://doi.org/10.1364/oe.20.020835

    Article  Google Scholar 

  19. Qayoom, T., Qazi, G., Najeeb-ud-din, H.: Design, characterization and performance evaluation of few-mode EDFA system with propagation up to six modes. Opt. Quantum Electron. 52(10), 1–19 (2020). https://doi.org/10.1007/s11082-020-02561-9

    Article  Google Scholar 

  20. Eznaveh Z.S., et al.: Ultra-low DMG multimode EDFA. In: Optical Fiber Communication Conference. Optica Publishing Group. Th4A-4 (2017)

  21. Fang, Y., Zeng, Y., Qin, Y., Xu, O., Li, J., Fu, S.: Design of ring-core few-mode-EDFA with the enhanced saturation input signal power and low differential modal gain. IEEE Photon. J. 13(4), 1–6 (2021). https://doi.org/10.1109/JPHOT.2021.3095123

    Article  Google Scholar 

  22. Ono, H., Miyamoto, Y., Mizuno, T., Yamada, M.: Gain control in multi-core erbium-doped fiber amplifier with cladding and core hybrid pumping. J. Lightwave Technol. 37(13), 3365–3372 (2019). https://doi.org/10.1109/JLT.2019.2915939

    Article  Google Scholar 

  23. Zhang, Z., et al.: 21 spatial mode erbium-doped fiber amplifier for mode division multiplexing transmission. Opt. Lett. 43(7), 1550 (2018). https://doi.org/10.1364/ol.43.001550

    Article  Google Scholar 

  24. Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Opt. Quantum Electron. 52(2), 1–16 (2020). https://doi.org/10.1007/s11082-019-2186-0

    Article  Google Scholar 

  25. Jeurink, S., Krummrich, P.M.: Multimode EDFA with Scalable Mode Selective Gain Control at 1480-nm Pump Wavelength. IEEE Photon. Technol. Lett. 30(9), 849–852 (2018). https://doi.org/10.1109/LPT.2018.2819241

    Article  Google Scholar 

  26. Desurvire, E.: Erbium-Doped Fiber Amplifiers: Principles and Applications. Wiley, Hoboken (1994)

    Google Scholar 

  27. Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  28. Gaur, A., Kumar, G., Rastogi, V.: Dual-core few mode EDFA for amplification of 20 modes. Opt. Quantum Electron. 50(2), 1–10 (2018). https://doi.org/10.1007/s11082-018-1322-6

    Article  Google Scholar 

  29. Herbster, A., Romero, M.A.: On the design of few-mode Er-doped fiber amplifiers for space-division multiplexing optical communications systems. Opt. Model. Des. III(9131), 268–276 (2014). https://doi.org/10.1117/12.2052038

    Article  Google Scholar 

  30. OptiSystem version 16, Optical communication system design software, Canada.

Download references

Funding

No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhail K. Naik.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, S.K., Qazi, G. Modified differential overlap factor and modal gain equalization criteria-based comparative analysis of 4M-EDFA 980;1480 nm towards identification of a unique erbium doping profile for the 4M-EDFA1480 nm system. J Comput Electron 22, 648–668 (2023). https://doi.org/10.1007/s10825-022-02000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-02000-w

Keywords

Navigation