Skip to main content
Log in

Band structure of molybdenum disulfide: from first principle to analytical band model

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A simple band model such as the effective mass approximation (EMA) can be used to quickly obtain the lower-energy region for the band structure of monolayer molybdenum disulfide. But the EMA band model cannot give the correct description for the band structure in the higher-energy region. To address this major issue, we propose an analytical band calculation (ABC) model to study monolayer molybdenum disulfide. Important parameters of the ABC model are obtained by fitting the three-direction band structure of monolayer molybdenum disulfide obtained from the first-principles (FP) method. The proposed ABC model fits well with the FP band structure calculation result for monolayer molybdenum disulfide. We also use the ABC model to calculate physical quantities used in carrier transport such as density of states and group velocity. Our ABC model can be extended and further utilized for calculating the key physical quantities of ballistic transport of 2D semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. IRDS 2020 version, the official website: https://irds.ieee.org/editions/2020

  2. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2011). https://doi.org/10.1038/nnano.2012.193

    Article  Google Scholar 

  3. Li, L.K., Yu, Y.J., Ye, G.J., Ge, Q.Q., Ou, X.D., Wu, H., Feng, D.L., Chen, X.H., Zhang, Y.B.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014). https://doi.org/10.1038/nnano.2014.35

    Article  Google Scholar 

  4. Chen, K.-T., Hsieh, M.-H., Yen-Shuo, Su., Lee, W.-J., Chang, S.-T.: Carrier mobility calculation for monolayer black phosphorous. J. Nanosci. Nanotechnol. 19, 6821–6825 (2019). https://doi.org/10.1166/jnn.2019.17126

    Article  Google Scholar 

  5. Chou, A.S., Shen, P.C., Cheng, C.C., Lu, L.S., Chueh, W.C., Li, M.Y., Pitner, G., Chang, W.H., Wu, C.I., Kong, J., Li, L.J., Philip Wong, H.S.: High on-current 2D nFET of 390 µA/µm at VDS = 1V using monolayer CVD MoS2 without intentional doping. In: Symposium on VLSI Technology, Honolulu, HI, paper TN1.7, June 15–19, 2020. https://doi.org/10.1109/VLSITechnology18217.2020.9265040

  6. Shen, P.-C., Su, C., Lin, Y., Chou, A.-S., Cheng, C.-C., Park, J.-H., Chiu, M.-H., Lu, A.-Y., Tang, H.-L., Tavakoli, M.M., Pitner, G., Ji, X., Cai, Z., Mao, N., Wang, J., Tung, V., Li, J., Bokor, J., Zettl, A., Wu, C.-I., Palacios, T., Li, L.-J., Kong, J.: Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211 (2021). https://doi.org/10.1038/s41586-021-03472-9

    Article  Google Scholar 

  7. Jin, Z., Li, X., Mullen, J.T., Kim, K.W.: Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 90, 045422 (2014). https://doi.org/10.1103/PhysRevB.90.045422

    Article  Google Scholar 

  8. Kaasbjerg, K., Thygesen, K.S., Jacobsen, K.W.: Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012). https://doi.org/10.1103/PhysRevB.85.115317

    Article  Google Scholar 

  9. Luisier, M., Szabo, A., Stieger, C., Klinkert, C., Bruck, S., Jain, A., Novotny, L.: First-principles simulations of 2-D semiconductor devices: mobility, I-V characteristics, and contact resistance. In: IEEE International Electron Devices Meeting (IEDM), December 3–7; San Francisco, US. pp. 123–126 (2016). https://doi.org/10.1109/IEDM.2016.7838353

  10. Osanloo, M.R., Van de Put, M.L., Saadat, A., Vandenberghe, W.G.: Identification of two-dimensional layered dielectrics from first principles. Nat. Commun. 12, 5051 (2021). https://doi.org/10.1038/s41467-021-25310-2

    Article  Google Scholar 

  11. Knobloch, T., Illarionov, Y.Y., Ducry, F., Schleich, C., Wachter, S., Watanabe, K., Taniguchi, T., Mueller, T., Waltl, M., Lanza, M., Vexler, M.I., Luisier, M., Grasser, T.: The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x

    Article  Google Scholar 

  12. Li, W., Walther, C.F.J., Kuc, A., Heine, T.: Density functional theory and beyond for band-gap screening: performance for transition-metal oxides and dichalcogenides. J. Chem. Theory Comput. 9, 2950 (2013). https://doi.org/10.1021/ct400235w

    Article  Google Scholar 

  13. Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W., Xiao, Di.: Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). https://doi.org/10.1103/PhysRevB.88.085433

    Article  Google Scholar 

  14. Hosseini, M., Elahi, M., Pourfath, M., Esseni, D.: Strain induced mobility modulation in single-layer MoS2. J. Phys. D: Appl. Phys. 48, 375104 (2015). https://doi.org/10.1088/0022-3727/48/37/375104

    Article  Google Scholar 

  15. Zahid, F., Lei Liu, Yu., Zhu, J.W., Guo, H.: A generic tight-binding model for monolayer, bilayer and bulk MoS2. AIP Adv. 3, 052111 (2013). https://doi.org/10.1063/1.4804936

    Article  Google Scholar 

  16. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  17. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  18. Ridley, B.K.: Quantum Processes in Semiconductors, 2ed edn., p. 33. Oxford University Press, Oxford (1988)

    Google Scholar 

  19. Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853 (2003). https://doi.org/10.1109/TED.2003.815366

    Article  Google Scholar 

  20. Kormányos, A., Zólyomi, V., Drummond, N.D., Rakyta, P., Burkard, G., Fal’ko, V.I.: Monolayer MoS2: trigonal warping, the Γ valley, and spin-orbit coupling effects. Phys. Rev. B 88, 045416 (2013). https://doi.org/10.1103/PhysRevB.88.045416

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council, Taiwan, R.O.C., under contract nos. MOST110-2622-8-002-014 and MOST 110-2221-E-005-060. Computing support was provided by the National Center for High-Performance Computing (NCHC), Taiwan. We would like to thank Uni-edit (www.uni-edit.net) for editing and proofreading this manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Tong Chang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CH., Chung, YF., Su, YS. et al. Band structure of molybdenum disulfide: from first principle to analytical band model. J Comput Electron 21, 571–581 (2022). https://doi.org/10.1007/s10825-022-01880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01880-2

Keywords

Navigation