Skip to main content
Log in

Using plasmonic cloaking method on infinite cylindrical structures and its applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In recent years, cloaking using materials with negative electric permittivity or magnetic permeability has been studied and researched. It has been demonstrated that covering an object with a cloak having an electric permittivity or magnetic permeability that is negative or less than unity can cause a reduction of the scattering cross-section (SCS) of the object. In this paper, we solve the scattering problem for an object with a single- or multilayer cylindrical cloak and thus obtain the fundamental equations necessary to design such cloaks under two conditions, viz. with and without consideration of the effects of coupling when solving the scattering problem. Using the obtained equations we demonstrate that this technique can indeed reduce the visibility of the object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dolin, L.S.: To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling. Izvestiya Vuzov Radiofizika 4(5), 964–967 (1961)

    Google Scholar 

  2. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  Google Scholar 

  3. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51(1), 3–33 (2009)

    Article  MathSciNet  Google Scholar 

  4. Kerker, M.: Invisible bodies. J. Opt. Soc. Am. 65(4), 376–379 (1975)

    Article  Google Scholar 

  5. Alù, A., Bilotti, F., Vegni, L.: Method of lines numerical analysis of conformal antennas. IEEE Trans. Antennas Propag. 52(6), 1530–1540 (2004)

    Article  Google Scholar 

  6. Alitalo, P., Luukkonen, O., Jylha, L., Venermo, J., Tretyakov, S.A.: Transmission-line networks cloaking objects from electromagnetic fields. IEEE Trans. Antennas Propag. 56(2), 416–424 (2008)

    Article  Google Scholar 

  7. Alitalo, P., Ranvier, S., Vehmas, J., Tretyakov, S.: A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects. Metamaterials 2(4), 206–212 (2008)

    Article  Google Scholar 

  8. Alitalo, P., Culhaoglu, A.E., Osipov, A.V., Thurner, S., Kemptner, E., Tretyakov, S.A.: Bistatic scattering characterization of a three-dimensional broadband cloaking structure. J. Appl. Phys. 111(3), 034901–034905 (2012)

    Article  Google Scholar 

  9. Nicorovici, N.A., Milton, G.W., McPhedran, R.C., Botten, L.C.: Quasistatic cloaking of two dimensional polarizable discrete systems by anomalous resonance. Opt. Express 15(10), 6314–6323 (2007)

    Article  Google Scholar 

  10. Nicorovici, N.P., McPhedran, R.V., Enoch, S., Tayeb, G.: Finite wavelength cloaking by plasmonic resonance. New J. Phys. 10(11), 115020 (2008)

    Article  Google Scholar 

  11. Alù, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72(1), 016623 (2005)

    Article  Google Scholar 

  12. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  Google Scholar 

  13. Chew, H., Kerker, M.: Abnormally low electromagnetic scattering cross sections. J. Opt. Soc. Am. 66(5), 445 (1976)

    Article  Google Scholar 

  14. Alù, A., Engheta, N.: Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking. New J. Phys. 10, 115036 (2008)

    Article  Google Scholar 

  15. Alù, A., Engheta, N.: Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. Opt. Express 15(6), 3318–3332 (2007)

    Article  Google Scholar 

  16. Alù, A., Engheta, N.: Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Opt. Express 15(12), 7578–7590 (2007)

    Article  Google Scholar 

  17. Alù, A., Engheta, N.: Cloaking a sensor. Phys. Rev. Lett. 102, 233901 (2009)

    Article  Google Scholar 

  18. Farhat, M., Rockstuhl, C., Bagci, H.: A 3D tunable and multi-frequency graphene plasmonic cloak. Opt. Express 21(10), 12592–12603 (2013)

    Article  Google Scholar 

  19. Alù, A., Rainwater, D., Kerkhoff, A.: Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling. New J. Phys. 12, 103028 (2010)

    Article  Google Scholar 

  20. Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, New York (1989)

    Google Scholar 

  21. Bilotti, F., Tricarico, S., Vegni, L.: Electromagnetic cloaking devices for TE and TM polarizations. New J. Phys. 12, 115035 (2008)

    Article  Google Scholar 

  22. Danaeifar, M., Booket, M., Granpayeh, N.: Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method. Electron. Lett. 52, 29–31 (2016)

    Article  Google Scholar 

  23. Monti, A., Bilotti, F., Toscano, A.: Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles. Opt. Lett. 36, 4479–4481 (2011)

    Article  Google Scholar 

  24. Chen, P.Y., et al.: Nanostructured graphene metasurface for tunable terahertz cloaking. New J. Phys. 15, 123029 (2013)

    Article  Google Scholar 

  25. Hamzavi-Zarghani, Z., Yahaghi, A., Matekovits, L.: Electrically tunable mantle cloaking utilizing graphene metasurface for oblique incidence. Int. J. Electron. Commun. 116, 153080 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Mohajeri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A., Mohajeri, F. & Hamzavi-Zarghani, Z. Using plasmonic cloaking method on infinite cylindrical structures and its applications. J Comput Electron 20, 2522–2529 (2021). https://doi.org/10.1007/s10825-021-01787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01787-4

Keywords

Navigation