Skip to main content
Log in

Numerical design and frequency response of MQW transistor lasers based entirely on group IV alloys

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A theoretical model is developed for npn mid-infrared transistor lasers (TLs) with a strain-balanced Ge0.85Sn0.15 multiple quantum well (MQW) structure in their base. The variation of the optical confinement factor, the modal gain, and the threshold current density is rigorously investigated for different numbers (N) of QWs in the MQW structure. The results show that overall the optical confinement factor and the modal gain increase with N. The frequency response of the MQWTL in the common-base (CB) configuration is estimated from the small-signal relationship between the photon density and the emitter current density by solving the laser rate equation and the continuity equation, considering the virtual states as a conversion mechanism. Increasing N causes the modulation bandwidth first to increase then to decrease with N. This reveals a shift in the nature of the device for higher values of N. The results also suggest that judicious selection of N will enable the proposed device to become a viable monolithic light source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

It is confirmed that all data and materials as well as software applications or custom code support their published claims.

References

  1. Soref, R.: Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495 (2010)

    Article  Google Scholar 

  2. Lo, G.Q., et al.: Silicon photonics technologies for monolithic electronic-photonic integrated circuit. ECS Trans. 28, 3–11 (2010)

    Article  Google Scholar 

  3. Nagase, R.: Fiber-optic interconnect technologies. Proc. SPIE 11286, Optical Interconnects XX, 112860E (2020)

  4. Dardano, P., Ferrara, M.: Integrated photodetectors based on group IV and colloidal semiconductors: current state of affairs. Micromachines 11, 1–24 (2020)

    Article  Google Scholar 

  5. Pareek, P., Das, M.K., Kumar, S.: Responsivity calculation of group IV-based interband MQWIP. J. Comput. Electron. 17, 319–328 (2018)

    Article  Google Scholar 

  6. Liang, D., Bowers, J.E.: Recent progress in lasers on silicon. Nat. Photon. 4(8), 511–517 (2010)

    Article  Google Scholar 

  7. Rong, H., Xu, S., Cohen, O., Raday, O., Lee, M., Sih, V., Paniccia, M.: A cascaded silicon Raman laser. Nat. Photon. 2(3), 170–174 (2008)

    Article  Google Scholar 

  8. Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., Michel, J.: An electrically pumped germanium laser. Opt. Express. 20(10), 11316–11320 (2012)

    Article  Google Scholar 

  9. Soref, R., Buca, D., Yu, S.Q.: Group IV photonics: driving integrated optoelectronics. Opt. Photon. News 27(1), 32–39 (2016)

    Article  Google Scholar 

  10. Soref, R.: Emerging SiGeSn integrated-photonics technology. IEEE Photonics Society Summer Topical Meeting Series (SUM), CA, pp. 100–101 (2016)

  11. Kouvetakis, J., Menedez, J., Chizmeshya, A.V.G.: Tin based group IV semiconductors: new platforms for opto and micro electronics and silicon. Annu. Rev. Mater. Res. 36, 497–554 (2006)

    Article  Google Scholar 

  12. Walter, G., Holonyak, N., Jr., Feng, M., Chan, R.: Laser operation of a heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 85, 4768–4770 (2004)

    Article  Google Scholar 

  13. Zhang, L., Leburton, J.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. IEEE J. Quantum Electron. 45(4), 359–366 (2009). https://doi.org/10.1109/JQE.2009.2013215

    Article  Google Scholar 

  14. Taghavi, I., Kaatuzian, H., Leburton, J.P.: Bandwidth enhancement and optical performances of multiple quantum well transistor lasers. Appl. Phys. Lett. 100, 231114 (2012)

    Article  Google Scholar 

  15. Taghavi, I., Kaatuzian, H., Leburton, J.: Performance optimization of multiple quantum well transistor laser. IEEE J. Quantum Electron. 49(4), 426–435 (2013). https://doi.org/10.1109/JQE.2013.2250488

    Article  Google Scholar 

  16. Li, Y., Leburton, J.P.: Base transport factor and frequency response of transistor lasers. J. Appl. Phys. 126, 153103 (2019)

    Article  Google Scholar 

  17. Ranjan, R., Das, M.K.: Theoretical estimation of optical gain in Tin incorporated group IV alloy based transistor laser. Opt Quantum Electronics. 48, Article no. 201 (2016)

  18. Ranjan, R., Das, M.K., Kumar, S.: Performance analysis of tin-incorporated group-IV alloy based transistor laser. Opt. Laser Technol. 106, 228–233 (2018)

    Article  Google Scholar 

  19. Ranjan, R., Pareek, P., Askari, S.S.A., Das, M.K.: Performance Analysis of GeSn Alloy Based Multiple QuantumWell Transistor Laser. Proc. SPIE 10526, Physics and Simulation of Optoelectronic Devices XXVI, 105262A (2018)

  20. Mukhopadhyay, B., Sen, G., De, S., Basu, R., Chakraborty, V., Basu, P.K.: Calculated characteristics of a transistor laser using alloys of Gr-IV elements. Phys. Status Solidi B 255, 1800117 (2018)

    Article  Google Scholar 

  21. Basu, R., Kaur, J., Sharma, A.K.: Analysis of a direct-Bandgap GeSn-based MQW transistor laser for mid-infrared applications. J. Electron. Mater. 48, 6335–6346 (2019)

    Article  Google Scholar 

  22. Basu, R., Mukhopadhyay, B., Basu, P.K.: Analytical model for threshold base current of a transistor laser with multiple quantum wells in the base. IET Optoelectron. 7(3), 71–73 (2013)

    Article  Google Scholar 

  23. Basu, R., Mukhopadhyay, B., Basu, P.K.: Modeling resonance-free modulation response in transistor lasers with single and multiple quantum wells in the base. IEEE Photonics J. 4(5), 1572–1581 (2012)

    Article  Google Scholar 

  24. Faraji, B., Shi, W., Pulfrey, D.L., Chrostowski, L.: Analytical modeling of the Transistor Laser. IEEE J. Sel. Top. Quantum Electron 15(3), 594–603 (2009)

    Article  Google Scholar 

  25. Ranjan, R., Pareek, P., Askari, S.S.A., Das, M.K.: Small signal analysis of tin-incorporated group-IV alloys based multiple quantum well Transistor Laser. In International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Hong Kong, pp. 73–74 (2018)

  26. Chang, G.E., Chang, S.W., Chuang, S.L.: Strain-balanced GezSn1–zSixGeySn1–xy multiple-quantum-well lasers. IEEE J. Quantum Electron. 46, 1813–1820 (2010)

    Article  Google Scholar 

  27. Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39(3), 1871–1883 (1989)

    Article  Google Scholar 

  28. Kroemer, H., Okamoto, H.: Some design considerations for multi-quantum-well lasers. Jpn. J. Appl. Phys. 23(8), 970–974 (1984). https://doi.org/10.1143/JJAP.23.970

    Article  Google Scholar 

  29. Nagarajan, R., Ishikawa, M., Fukushima, T., Geels, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28(10), 1990–2008 (1992). https://doi.org/10.1109/3.159508

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by a project under CRS (application ID: 1-5748741991), by NPIU a unit of MHRD, Govt. of India at Darbhanga College of Engineering, Darbhanga, Bihar, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Pareek, P., Das, M.K. et al. Numerical design and frequency response of MQW transistor lasers based entirely on group IV alloys. J Comput Electron 20, 1760–1768 (2021). https://doi.org/10.1007/s10825-021-01732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01732-5

Keywords

Navigation