Skip to main content
Log in

Interplay between channel and shot noise at the onset of spiking activity in neural membranes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The role played by ion channel noise and ion shot noise around the threshold conditions for spiking activity in biological membranes is studied by means of a stochastic model based on the Hodgkin–Huxley equations, considering membrane voltage-dependent gating channels for sodium and potassium cations, and leakage channels. Ion channel noise, that is, the noise linked to the random opening and closing of the ion channels, is included by means of Langevin sources. Ion shot noise, associated with the random passage of ions through the cell membrane, is considered by using the Gillespie’s method, in terms of the probabilities for different ions to cross the membrane. The threshold for spiking activity is reached by applying increasing values of an external excitation Iapp in a large membrane patch S, for which the strength of channel noise is insufficient for the onset of spikes in the absence of Iapp. On the other hand, since by decreasing S the strength of both noise sources increases, spiking activity is also achieved for small enough values of S when Iapp = 0. The noise behavior of this biological system is analyzed in terms of the autocorrelation function and the spectral density of the membrane voltage fluctuations. Even if ion shot noise is typically considered as negligible when other electrical sources of neural noise are taken into account, the results indicate that, particularly around the onset of instabilities, the signature of shot noise, by the interplay with channel noise, is evident in the spectral density of the membrane voltage fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eisenberg, B.: Ion channels as devices. J. Comput. Electron. 2, 245–249 (2003)

    Article  Google Scholar 

  2. Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011)

    Article  Google Scholar 

  3. Kaneko, Y., Nishitani, Y., Ueda, M.: Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron. Dev. 61, 2827–2833 (2014)

    Article  Google Scholar 

  4. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 512, 61–64 (2015)

    Article  Google Scholar 

  5. Romeo, A., Dimonte, A., Tarabella, G., D'Angelo, P., Erokhin, V., Iannotta, S.: A bio-inspired memory device based on interfacing physarum polycephalum with an organic semiconductor. APL Mater. 3, 014909 (2015)

    Article  Google Scholar 

  6. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. 9, 292–303 (2008)

    Article  Google Scholar 

  7. Kilinc, D., Demir, A.: Noise in neuronal and electronic circuits: a general modeling framework and non-Monte Carlo simulation techniques. IEEE Trans. Biomed. Circuits Syst. 11, 958–974 (2017)

    Article  Google Scholar 

  8. Kilinc, D., Demir, A.: Spike timing precision of neuronal circuits. J. Comput. Neurosci. 44, 341–362 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chein, W.R., Midtgaard, J., Shepherd, G.M.: Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278, 463–467 (1997)

    Article  Google Scholar 

  10. Chua, L.: Memristor, Hodgkin–Huxley and edge of chaos. IOP Nanotechnol. 24, 383001 (2013)

    Article  Google Scholar 

  11. Hodgkin, L.A., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  12. Steinmetz, P.N., Manwani, A., Koch, C.: Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J. Comput. Neurosci. 9, 113–148 (2000)

    Article  Google Scholar 

  13. Jacobson, G.A., Diba, K., Yaron-Jakoubovitch, A., Oz, Y., Koch, C., Segev, I., Yaron, Y.: Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564, 145–160 (2005)

    Article  Google Scholar 

  14. Linaro, D., Storace, M., Giugliano, M.: Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. Plos Comput. Biol. 7, e1001102 (2011)

    Article  MathSciNet  Google Scholar 

  15. Schmid, G., Goychuk, I., Hänggi, P.: Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett. 56, 22–28 (2001)

    Article  Google Scholar 

  16. Vasallo, B.G., Pardo-Galán, F., Mateos, J., González, T., Hedayat, S., Hoel, V., Cappy, A.: Stochastic model for action potential simulation including ion shot noise. J. Comput. Electron. 16, 419–430 (2017)

    Article  Google Scholar 

  17. Vasallo, B.G., Mateos, J., González, T.: Ion shot noise in Hodgkin and Huxley neurons. J. Comput. Electron. 17, 1790–1796 (2018)

    Article  Google Scholar 

  18. Vasallo, B.G., Mateos, J., González, T.: Stochastic model for ion shot noise in Hodgkin and Huxley neurons. In: IEEE Proceedings of International Conference on Noise and Fluctuations (ICNF), 2017. DOI: 10.1109/icnf.2017.7985975 (2017)

  19. Vasallo, B.G., Mateos, J., González, T.: Interplay between channel and shot noise in subthreshold voltage fluctuations of neural membranes. In: Proceedings of International Conference on Noise and Fluctuations (ICNF), 2019. DOI: 10.5075/epfl-ICLAB-ICNF-269293 (2019)

  20. Schmid, G., Goychuk, I., Hänggi, P.: Channel noise and synchronization in excitable membranes. Phys. A 325, 165–175 (2003)

    Article  MathSciNet  Google Scholar 

  21. Schmid, G., Goychuk, I., Hänggi, P., Zeng, S., Jung, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61–66 (2004)

    Article  Google Scholar 

  22. Adair, R.K.: Noise and stochastic resonance in voltage-gated ion channels. PNAS 100, 12099–12104 (2003)

    Article  Google Scholar 

  23. Faisal, A.A., White, J.A., Laughlin, S.B.: Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr. Biol. 15, 1143–1149 (2005)

    Article  Google Scholar 

  24. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolutions of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  25. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  26. Brunetti, R., Affinito, F., Jacoboni, C., Piccinini, E., Rudan, M.: Shot noise in single open ion channels: a computational approach based on atomistic simulations. J. Comput. Electron. 6, 391–394 (2007)

    Article  Google Scholar 

  27. Piccinini, E., Affinito, F., Brunetti, R., Jacoboni, C., Rudan, M.: Computational analysis of current and noise properties of a single open ion channel. J. Chem. Theory Comput. 3, 248–255 (2007)

    Article  Google Scholar 

  28. Kuang, S., Wang, J., Zeng, T.: Intrinsic rhythmic fluctuation of membrane voltage evoked by membrane noise in the Hodgkin–Huxley system. Acta Phys. Pol. A 117, 435–438 (2010)

    Article  Google Scholar 

  29. García-Pérez, O., Alimi, Y., Song, A., Íñiguez-de-la-Torre, I., Pérez, S., Mateos, J., González, T.: Experimental assessment of anomalous low-frequency noise increase at the onset of Gunn oscillations in InGaAs planar diodes. Appl. Phys. Lett. 105(1–4), 113502 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz G. Vasallo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasallo, B.G., Mateos, J. & González, T. Interplay between channel and shot noise at the onset of spiking activity in neural membranes. J Comput Electron 19, 792–799 (2020). https://doi.org/10.1007/s10825-020-01482-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01482-w

Keywords

Navigation