Skip to main content
Log in

Design of an add filter and a 2-channel optical demultiplexer with high-quality factor based on nano-ring resonator

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we first present the design of a nano-ring resonator-based filter, in which scattering rods are used at the corners of the structure. By choosing a suitable radius for the dielectric rods in the nano-ring resonator, low channel spacing and high-quality factor parameters have been achieved at 1586.8 nm wavelength. Then, using this filter, a 2-channel demultiplexer is developed. In the proposed demultiplexer, two lattice constants are used: a1 for the main structure and a2 for the structure in the nano-ring resonator. The difference in the lattice constants results in an increase in the quality factor. Some of the advantages of this 2-channel demultiplexer include an average quality factor of 5443, average channel spacing of 0.35 nm, and central wavelengths of 1554.5 nm and 1557.1 nm, respectively, for the first and second channels. Moreover, the minimum and maximum inter-channel cross talks are − 17.63 dB and − 12.1 dB, respectively. Due to the 2.6 nm inter-channels spacing, this structure can be exploited in optical integrated circuits, WDM and DWDM systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Divya, J., Selvendran, S., Raja, A.S.: Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application. Photonic Netw. Commun. 35(3), 353–363 (2018)

    Article  Google Scholar 

  2. Bendjelloul, R., Bouchemat, T., Bouchemat, M., Benmerkhi, A.: New design of T-shaped channel drop filter based on photonic crystal ring resonator. Nanosci. Nanotechnol. 6(1A), 13–17 (2016)

    Google Scholar 

  3. Kannaiyan, V., Dhamodharan, S.K., Savarimuthu, R.: Performance analysis of two-dimensional photonic crystal octagonal ring resonator based eight channel demultiplexer. Opt. Appl. 47(1), 7–18 (2017)

    Google Scholar 

  4. Chhipa, M.K., Radhouene, M., Robinson, S., Suthar, B.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Eng. 56(1), 015107 (2017)

    Article  Google Scholar 

  5. Seifouri, M., Fallahi, V., Olyaee, S.: Ultra-high-Q optical filter based on photonic crystal ring resonator. Photonics Netw. Commun. 35(2), 225–230 (2018)

    Article  Google Scholar 

  6. Tani, F., Travers, J.C., Russell, P.S.J.: Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber. JOSA B 31(2), 311–320 (2014)

    Article  Google Scholar 

  7. Hosseini, P., Ermolov, A., Tani, F., Novoa, D., Russell, P.S.: UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber. ACS Photonics 5(6), 2426–2430 (2018)

    Article  Google Scholar 

  8. Zhao, D., Liu, S., Yang, H., Ma, Z., Reuterskiöld-Hedlund, C., Hammar, M., Zhou, W.: Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon. Sci. Rep. 6, 18860 (2016)

    Article  Google Scholar 

  9. Noda, S., Kitamura, K., Okino, T., Yasuda, D., Tanaka, Y.: Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals. IEEE J. Sel. Top. Quantum Electron. 23(6), 1–7 (2017)

    Article  Google Scholar 

  10. Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Optik. Int. J. Light Electron Opt. 125(19), 5833–5836 (2014)

    Article  Google Scholar 

  11. Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2017-0129

    Article  Google Scholar 

  12. Mohebzadeh-Bahabady, A., Olyaee, S.: All-optical NOT and XOR logic gates using a photonic crystal nano-resonator and based on interference effect. IET Optoelectron. 12(4), 191–195 (2018)

    Article  Google Scholar 

  13. haq Shaik, E., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34(1), 140–148 (2017)

    Article  Google Scholar 

  14. Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 7(4), 311–316 (2017)

    Article  Google Scholar 

  15. Olyaee, S., Mohebzadeh-Bahabady, A.: Two-curve-shaped biosensor for detecting glucose concentration and salinity of seawater based on photonic crystal nano-ring resonator. Sens. Lett. 13(9), 774–777 (2015)

    Article  Google Scholar 

  16. Mohebzadeh-Bahabady, A., Olyaee, S., Arman, H.: Optical biochemical sensor using photonic crystal nano-ring resonators for detection of protein concentration. Curr. Nanosci. 13(4), 421–425 (2017)

    Google Scholar 

  17. Ghorbanpour, H., Makouei, S.: 2-channel all optical demultiplexer based on photonic crystal ring resonator. Front. Optoelectron. 6(2), 224–227 (2013)

    Article  Google Scholar 

  18. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17(3–4), 259–263 (2015)

    MATH  Google Scholar 

  19. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)

    Article  Google Scholar 

  20. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Opt. Int. J. Light Electron Opt. 140, 331–337 (2017)

    Article  Google Scholar 

  21. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(20), 8706–8709 (2016)

    Article  Google Scholar 

  22. Fallahi, V., Seifouri, M., Olyaee, S., Alipour-Banaei, H.: Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt. Rev. 24(4), 605–610 (2017)

    Article  Google Scholar 

  23. Yasumoto, K.: Electromagnetic Theory and Applications for Photonic Crystals. Taylor & Francis, London (2006)

    Google Scholar 

  24. Parandin, F., Karkhanehchi, M.M., Naseri, M., Zahedi, A.: Design of a high bitrate optical decoder based on photonic crystals. J. Comput. Electron. 17(2), 830–836 (2018)

    Article  Google Scholar 

  25. Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals: Physics and Practical Modeling. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab), and the authors would like to thank Shahid Rajaee Teacher Training University for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delphi, G., Olyaee, S., Seifouri, M. et al. Design of an add filter and a 2-channel optical demultiplexer with high-quality factor based on nano-ring resonator. J Comput Electron 18, 1372–1378 (2019). https://doi.org/10.1007/s10825-019-01399-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01399-z

Keywords

Navigation