Skip to main content
Log in

\({ SIM}^2{ RRAM}\): a physical model for RRAM devices simulation

  • S.I.: Computational Electronics of Emerging Memory Elements
  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In the last few years, resistive random access memory (RRAM) has been proposed as one of the most promising candidates to overcome the current Flash technology in the market of non-volatile memories. These devices have the ability to change their resistance state in a reversible and controlled way applying an external voltage. In this way, the resulting high- and low-resistance states allow the electrical representation of the binary states “0” and “1” without storing charge. Many physical models have been developed with the aim of understanding the mechanisms that control the resistive switching. In this work, we have compiled the main theories accepted as well as their corresponding models for the conduction characteristics. In addition, simulation tools play a very important role in the task of checking these theories and understanding these mechanisms. For this reason, the simulation tool called \(\hbox {SIM}^{2}\hbox {RRAM}\) has been presented. This simulator is capable of replicating the global behavior of RRAM cell based on \(\hbox {HfO}_{x}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

BD:

Dielectric breakdown

CAFM:

Conductive atomic force microscopy

CBRAM:

Conductive bridge RAM

CF:

Conductive filament

ECM-RRAM:

Electrochemical metallization memories RRAM

HRS:

High resistance state

IM:

Inert metal

LRS:

Low resistance state

MIM:

Metal/insulator/metal

NVM:

Non-volatile electronic memory

P–F:

Poole–Frenkel emission

QPC:

Quantum Point Contact

RRAM:

Resistive random access memory

RS:

Resistive switching

SCH:

Schottky barrier

SCLC:

Space-charge limited current

SS:

Stainless steel

STM:

Scanning tunneling microscopy

TCM-RRAM:

Thermochemical memories RRAM

TELC:

Thermionic emission limited conduction

VCM-RRAM:

Valence change memory RRAM

X-TEM:

Cross-sectional transmission electron microscopy

References

  1. Bez, R., Camerlenghi, E., Modelli, A., Visconti, A.: Introduction to flash memory. Proc. IEEE 91(4), 489–502 (2003)

    Article  Google Scholar 

  2. Masuoka, F., Asano, M., Iwahashi, H., Komuro, T., Tanaka, S.: A new flash \(\text{E}^{2}\text{ PROM }\) cell using triple polysilicon technology. In: Electron Devices Meeting, 1984 International IEEE, vol. 30, pp. 464–467 (1984)

  3. Frohman-Bentchkowsky, D.: Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure. Appl. Phys. Lett. 18(8), 332–334 (1971)

    Article  Google Scholar 

  4. Frohman-Bentchkowsky, D.: FAMOS—a new semiconductor charge storage device. Solid-State Electron. 17(6), 517–529 (1974)

    Article  Google Scholar 

  5. Moore, G.: Moore’s law. Electron. Mag. 38, 114 (1965)

    Google Scholar 

  6. Bayerl, A., Lanza, M., Porti, M., Nafria, M., Aymerich, X., Campabadal, F., Benstetter, G.: Nanoscale and device level gate conduction variability of high-k dielectrics-based metal-oxide-semiconductor structures. IEEE Trans. Device Mater. Reliab. 11(3), 495–501 (2011)

    Article  Google Scholar 

  7. Lanza, M., Porti, M., Nafría, M., Aymerich, X., Ghidini, G., ebastiani, A.: Trapped charge and stress induced leakage current (SILC) in tunnel \(\text{ SiO }_{2}\) layers of de-processed MOS non-volatile memory devices observed at the nanoscale. Microelectron. Reliab. 49(9), 1188–1191 (2009)

    Article  Google Scholar 

  8. Lanza, M., Porti, M., Nafria, M., Benstetter, G., Frammelsberger, W., Ranzinger, H., Lodermeier, E., Jaschke, G.: Influence of the manufacturing process on the Electrical properties of thin (\(< 4\text{ nm }\)) Hafnium based high-k stacks observed with CAFM. Microelectron. Reliab. 47(9), 1424–1428 (2007)

    Article  Google Scholar 

  9. Nafria, M., Rodriguez, R., Porti M., Martin-Martinez, J., Lanza, M., Aymerich, X.: Time-dependent variability of high-k based MOS devices: nanoscale characterization and inclusion in circuit simulators. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 6.3.1–6.3.4 (2011)

  10. Pirrotta, O., Larcher, L., Lanza, M., Padovani, A., Porti, M., Nafría, M., Bersuker, G.: Leakage current through the poly-crystalline \(\text{ HfO }_{2}\): Trap densities at grains and grain boundaries. J. Appl. Phys. 114(13), 134503 (2013)

    Article  Google Scholar 

  11. Lanza, M., Porti, M., Nafria, M., Aymerich, X., Benstetter, G., Lodermeier, E., Ranzinger, H., Jaschke, G., Teichert, S., Wilde, L., Michalowski, P.: Crystallization and silicon diffusion nanoscale effects on the electrical properties of \(\text{ Al }_{2}\text{ O }_{3}\) based devices. Microelectron. Eng. 86(7), 1921–1924 (2009)

    Article  Google Scholar 

  12. Lanza, M., Porti, M., Nafría, M., Aymerich, X., Benstetter, G., Lodermeier, E., Ranzinger, H., Jaschke, G., Teichert, S., Wilde, L., Michalowski, P.: Conductivity and charge trapping after electrical stress in amorphous and polycrystalline \(\text{ Al }_{2}\text{ O }_{3}\)-based devices studied with AFM-related techniques. IEEE Trans. Nanotechnol. 10(2), 344–351 (2011)

    Article  Google Scholar 

  13. The International Technology Roadmap for Semiconductors ed. 2011. http://www.itrs2.net/2011-itrs.html. Last Accessed 11 March 2017

  14. Ielmini, D.: Reliability issues and modeling of flash and post-flash memory. Microelectron. Eng. 86(7), 1870–1875 (2009)

    Article  Google Scholar 

  15. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  Google Scholar 

  16. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  17. Chung, A., Deen, J., Lee, J.S., Meyyappan, M.: Nanoscale memory devices. Nanotechnology 21(41), 412001 (2010)

    Article  Google Scholar 

  18. Kim, K.M., Jeong, D.S., Hwang, C.S.: Nanofilamentary resistive switching in binary oxide system; a review on the present statusand outlook. Nanotechnology 22(25), 254002 (2011)

    Article  Google Scholar 

  19. Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110(7), 14 (2011)

    Article  Google Scholar 

  20. Sacchetto, D., De Micheli, G., Leblebici, Y.: Multiterminal memristive nanowire devices for logic and memory applications: a review. Proc. IEEE 100, 2008–2020 (2012)

    Article  Google Scholar 

  21. Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33(3), 1129 (1970)

    Article  Google Scholar 

  22. Ahn, C., Jiang, Z., Lee, C.S., Chen, H.Y., Liang, J., Liyanage, L.S., Wong, H.S.P.: 1D selection device using carbon nanotube FETs for high-density cross-point memory arrays. IEEE Trans. Electron Devices 62(7), 2197–2204 (2015)

    Article  Google Scholar 

  23. Govoreanu, B., Kar, G.S., Chen, Y.Y., Paraschiv, V., Fantini, A., Radu, I. P., Goux, L., Clima, S., Degraeve, R., Jossart, N.: IEEE International Electron Devices Meeting, p. 31 (2011)

  24. Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M.: Demonstration of high-density ReRAM ensuring 10-year retention at \(85^{\circ }\text{ C }\) based on a newly developed reliability model. In: IEEE International Electron Devices Meeting, pp. 31.4.1 – 31.4.4 (2008)

  25. Website of statistic brain: http://www.statisticbrain.com/average-cost-of-hard-drive-storage/. Last Accessed 22 July 2017

  26. The International Technology Roadmap for Semiconductors ed. 2013. http://www.itrs2.net/2013-itrs.html. Last Accessed 22 July 2017

  27. Chiu, F.C., Li, P.W., Chang, W.Y.: Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Res. Lett. 7(1), 178 (2012)

    Article  Google Scholar 

  28. Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111(7), 074508 (2012)

    Article  Google Scholar 

  29. Raghavan, N.: Performance and reliability trade-offs for high-j RRAM. Microelectron. Reliab. 54(9), 2253–2257 (2014)

    Article  Google Scholar 

  30. Liu, X., Biju, K.P., Lee, J., Park, J., Kim, S., Park, S., Shin, J., Sadaf, SMd, Hwang, H.: Parallel memristive filaments model applicable to bipolar and filamentary resistive switching. Appl. Phys. Lett. 99(11), 113518 (2011)

    Article  Google Scholar 

  31. Goux, L., Czarnecki, P., Chen, Y.Y., Pantisano, L., Wang, X.P., Degraeve, R., Govoreanu, B., Jurczak, M., Wouters, D.J., Altimime, L.: Evidences of oxygen-mediated resistive-switching mechanism in \(\text{ TiN }/\text{ HfO }_{2}/\text{ PT }\) cells. Appl. Phys. Lett. 97, 243509 (2010)

    Article  Google Scholar 

  32. Zhang, H., Liu, L., Gao, B., Qiu, Y., Liu, X., Lu, J., Han, R., Kang, J., Yu, B.: Gd-doping effect on performance of HfO\(_2\) based resistive switching memory devices using implantation approach. Appl. Phys. Lett. 98(4), 042105 (2011)

    Article  Google Scholar 

  33. Zhu, W., Chen, T.P., Yang, M., Liu, Y., Fung, S.: Resistive switching behavior of partially anodized aluminum thin film at elevated temperatures. IEEE Trans. Electron Devices 59(9), 2363–2367 (2012)

    Article  Google Scholar 

  34. Xie, C., Nie, B., Zhu, L., Zeng, L.H., Yu, Y.Q., Wang, X.H., Fang, Q.L., Luo, L.B., Wu, Y.C.: High-performance nonvolatile \(\text{ Al }/\text{ AlO }_{{\rm x}}/\text{ CdTe }\): Sb nanowire memory device. Nanotechnology 24(35), 355203 (2013)

    Article  Google Scholar 

  35. Lin, C.Y., Wu, C.Y., Wu, C.Y., Hu, C., Tseng, T.Y.: Bistable resistive switching in \(\text{ Al }_{2}\text{ O }_{3}\) memory thin films. J. Electrochem. Soc. 154(9), G189–G192 (2007)

    Article  Google Scholar 

  36. Li, Y., Sinitskii, A., Tour, J.M.: Electronic two-terminal bistable graphitic memories. Nat. Mater. 7(12), 966–971 (2008)

    Article  Google Scholar 

  37. Syu, Y.-E., Zhang, R., Chang, T.-C., Tsai, T.-M., Chang, K.-C., Lou, J.-C., Young, T.-F., Chen, J.-H., Chen, M.-C., Yang, Y.-L., Shih, C.-C., Chu, T.-J., Chen, J.-Y., Pan, C.-H., Su, Y.-T., Huang, H.-C., Gan, D.-S., Sze, S.M.: Endurance improvement technology with nitrogen implanted in the interface of \(\text{ WSiO }_{{\rm x}}\) resistance switching device. IEEE Electron Dev. Lett. 34(7), 864 (2013)

    Article  Google Scholar 

  38. Yoshida, C., Tsunoda, K., Noshiro, H., Sugiyama, Y.: High speed resistive switching in \(\text{ Pt }/\text{ TiO }_{2}/\text{ Ti }\) N film for nonvolatile memory application. Appl. Phys. Lett. 91(22), 223510 (2007)

    Article  Google Scholar 

  39. Song, S.J., Seok, J.Y., Yoon, J.H., Kim, K.M., Kim, G.H., Lee, M.H., Hwang, C.S.: Real-time identification of the evolution of conducting nano-filaments in \(\text{ TiO }_{2}\) thin film ReRAM. Sci. Rep. 3, 3443 (2013)

    Article  Google Scholar 

  40. Huang, Y.C., Chen, P.Y., Chin, T.S., Liu, R.S., Huang, C.Y., Lai, C.H.: Improvement of resistive switching in NiO-based nanowires by inserting Pt layers. Appl. Phys. Lett. 101(15), 153106 (2012)

    Article  Google Scholar 

  41. Lee, M.J., Park, Y., Suh, D.S., Lee, E.H., Seo, S., Kim, D.C., Jung, R., Kang, B.S., Ahn, S.E., Lee, C.B., Seo, D.H., Cha, Y.K., Yoo, I.K., Kim, J.S., Park, B.H.: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19(22), 3919–3923 (2007)

    Article  Google Scholar 

  42. Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.I.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 587–590 (2004)

  43. Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)

    Article  Google Scholar 

  44. Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 186–192 (2009)

    Article  Google Scholar 

  45. Zhang, S., Long, S., Guan, W., Liu, Q., Wang, Q., Liu, M.: Resistive switching characteristics of \(\text{ MnO }_{{\rm x}}\)-based ReRAM. J. Phys. D Appl. Phys. 42(5), 055112 (2009)

    Article  Google Scholar 

  46. Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in \(\text{ Ti }/\text{ MnO }_{2}/\text{ Pt }\) structure for nonvolatile memory devices. Appl. Phys. Lett. 95(4), 042105 (2009)

    Article  Google Scholar 

  47. Gao, X., Guo, H., Xia, Y., Yin, J., Liu, Z.: Unipolar resistive switching characteristics in \(\text{ Co }_{3}\text{ O }_{4}\) films. Thin Solid Films 519(1), 450–452 (2010)

    Article  Google Scholar 

  48. Kwak, J.S., Do, Y.H., Bae, Y.C., Im, H., Hong, J.P.: Reproducible unipolar resistive switching behaviors in the metal-deficient \(\text{ CoO }_{{\rm x}}\) thin film. Thin Solid Films 518(22), 6437–6440 (2010)

    Article  Google Scholar 

  49. Shima, H., Takano, F., Muramatsu, H., Akinaga, H., Tamai, Y., Inque, I.H., Takagi, H.: Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93(11), 113504 (2008)

    Article  Google Scholar 

  50. Yang, J.B., Chang, T.C., Huang, J.J., Chen, S.C., Yang, P.C., Chen, Y.T., Tseng, H.C., Sze, S.M., Chu, A.K., Tsai, M.J.: Resistive switching characteristics of gallium oxide for nonvolatile memory application. Thin Solid Films 529, 200–204 (2013)

    Article  Google Scholar 

  51. Chen, A., Haddad, S., Wu, Y.C., Fang, T.N., Kaza, S., Lan, Z.: Erasing characteristics of \(\text{ Cu }_{2}\text{ O }\) metal-insulator-metal resistive switching memory. Appl. Phys. Lett. 92(1), 013503 (2008)

    Article  Google Scholar 

  52. Yin, M., Zhou, P., Lv, H.B., Tang, T.A., Chen, B.A., Lin, Y.Y., Bao, A., Chi, M.H.: In: Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology, p. 917 (2008)

  53. Hu, P., Li, X.Y., Lu, J.Q., Yang, M., Lv, Q.B., Li, S.W.: Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys. Lett. A 375(18), 1898–1902 (2011)

    Article  Google Scholar 

  54. Chen, Y.S., Chen, B., Gao, B., Zhang, F.F., Qiu, Y.J., Lian, G.J., Liu, L.F., Han, R.Q., Kang, J.F.: Anticrosstalk characteristics correlated with the set process for \({\rm \alpha }-\text{ Fe }_{2}\text{ O }_{3}/\text{ Nb }-\text{ SrTiO }_{3}\) stack-based resistive switching device. Appl. Phys. Lett. 97(26), 262112 (2010)

    Article  Google Scholar 

  55. Muraoka, S., Osano, K., Kanzawa, Y., Mitani, S., Fujii, S., Katayama, K., Katoh, Y., Wei, Z., Mikawa, T., Arita, K., Kawashima, Y., Azuma, R., Kawai, K., Shimakawa, K., Odagawa, A., Takagi, T.: Fast switching and long retention Fe-O ReRAM and its switching mechanism. In: Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 779–782 (2007)

  56. Wang, Z.Q., Xu, H.Y., Li, X.H., Zhang, X.T., Liu, Y.X., Liu, Y.C.: Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance. IEEE Electron Device Lett. 32(10), 1442–1444 (2011)

    Article  Google Scholar 

  57. Yang, Y.C., Pan, F., Liu, Q., Liu, M., Zeng, F.: Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636–1643 (2009)

    Article  Google Scholar 

  58. Tappertzhofen, S., Valov, I., Tsuruoka, T., Hasegawa, T., Waser, R., Aono, M.: Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7(7), 6396–6402 (2013)

    Article  Google Scholar 

  59. Menzel, S., Kaupmann, P., Waser, R.: Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations. Nanoscale 7(29), 12673–12681 (2015)

    Article  Google Scholar 

  60. Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., Chen, L., Cheng, X.: Forming-free colossal resistive switching effect in rare-earth-oxide \(\text{ Gd }_{2}\text{ O }_{3}\) films for memristor applications. J. Appl. Phys. 106(7), 073023-1–073023-5 (2009)

    Article  Google Scholar 

  61. Liu, K.C., Tzeng, W.H., Chang, K.M., Chan, Y.C., Kuo, C.C., Cheng, C.W.: The resistive switching characteristics of a \(\text{ Ti }/\text{ Gd }_{2}\text{ O }_{3}/\text{ Pt }\) RRAM device. Microelectron. Reliab. 50(5), 670–673 (2010)

    Article  Google Scholar 

  62. Zhao, H., Tu, H., Wei, F., Xiong, Y., Zhang, X., Du, J.: Characteristics and mechanism of nano-polycrystalline \(\text{ La }_{2}\text{ O }_{3}\) thin-film resistance switching memory. Phys. Status Solidi RRL 7(11), 1005–1008 (2013)

    Article  Google Scholar 

  63. Lin, C.Y., Lee, D.Y., Wang, S.Y., Lin, C.C., Tseng, T.Y.: Reproducible resistive switching behavior in sputtered \(\text{ CeO }_{2}\) polycrystalline films. Surf. Coat. Technol. 203(5), 480–483 (2009)

    Google Scholar 

  64. Mondal, S., Chen, H.Y., Her, J.L., Ko, F.H., Pan, T.M.: Effect of Ti doping concentration on resistive switching behaviors of \(\text{ Yb }_{2}\text{ O }_{3}\) memory cell. Appl. Phys. Lett. 101(8), 083506 (2012)

    Article  Google Scholar 

  65. Huang, S.Y., Chang, T.C., Chen, M.C., Chen, S.C., Lo, H.P., Huang, H.C., Gan, D.S., Sze, S.M., Tsai, M.J.: Resistive switching characteristics of \(\text{ Sm }_{2}\text{ O }_{3}\) thin films for nonvolatile memory applications. Solid State Electron. 63(1), 189–191 (2011)

    Article  Google Scholar 

  66. Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Colossal electro-resistance memory effect at \(\text{ metal }/\text{ La }_{2}\text{ CuO }_{4}\) interfaces. Jpn. J. Appl. Phys. 44(9L), L1241 (2005)

    Article  Google Scholar 

  67. Liu, K.C., Tzeng, W.H., Chang, K.M., Huang, J.J., Lee, Y.J., Yeh, P.H., Chen, P.S., Lee, H.Y., Chen, F., Tsai, M.J.: Investigation of the effect of different oxygen partial pressure to \(\text{ LaAlO }_{3}\) thin film properties and resistive switching characteristics. Thin Solid Films 520(4), 1246–1250 (2011)

    Article  Google Scholar 

  68. Tian, H.F., Zhao, Y.G., Jiang, X.L., Shi, J.P., Zhang, H.J., Sun, J.R.: Resistance switching effect in \(\text{ LaAlO }_{3}\)/Nb-doped \(\text{ SrTiO }_{3}\) heterostructure. Appl. Phys. A Mater. Sci. Process. 102(4), 939–942 (2011)

    Article  Google Scholar 

  69. Liu, L., Zhang, S., Luo, Y., Yuan, G., Liu, J., Yin, J., Liu, Z.: Coexistence of unipolar and bipolar resistive switching in \(\text{ BiFeO }_{3}\) and \(\text{ Bi }_{0.8}\text{ Ca }_{0.2}\text{ FeO }_{3}\) films. J. Appl. Phys. 111(10), 104103 (2012)

    Article  Google Scholar 

  70. Shirolkar, M.M., Hao, C., Dong, X., Guo, T., Zhang, L., Li, M., Wang, H.: Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped \(\text{ BiFeO }_{3}\) nanoparticles: an effect of aliovalent substitution. Nanoscale 6(9), 4735–4744 (2014)

    Article  Google Scholar 

  71. Zhang, X.T., Yu, Q.X., Yao, Y.P., Li, X.G.: Ultrafast resistive switching in \(\text{ SrTiO }_{3}\): Nb single crystal. Appl. Phys. Lett. 97(22), 222117 (2010)

    Article  Google Scholar 

  72. Seong, D.J., Jo, M., Lee, D., Hwang, H.: HPHA effect on reversible resistive switching of Pt/Nb-Doped SrTiO3 schottky junction for nonvolatile memory application. Electrochem. Solid-State Lett. 10(6), H168–H170 (2007)

    Article  Google Scholar 

  73. Makarov, A., Sverdlov, V., Selberherr, S.: Stochastic model of the resistive switching mechanism in bipolar resistive random access memory: Monte Carlo simulations. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29(1), 01AD03 (2011)

    Google Scholar 

  74. Lin, C.C., Lin, C.Y., Lin, M.H., Lin, C.H., Tseng, T.Y.: Voltage-polarity-independent and high-speed resistive switching properties of V-doped \(\text{ SrZrO }_{3}\) thin films. IEEE Trans. Electron Devices 54(12), 3146–3151 (2007)

    Article  Google Scholar 

  75. Chang, W.Z., Chu, J.P., Wang, S.F.: Resistive switching behavior of a thin amorphous rare-earth scandate: effects of oxygen content. Appl. Phys. Lett. 101(1), 012102-1–012102-4 (2012)

    Article  Google Scholar 

  76. Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004)

    Article  Google Scholar 

  77. Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M.: Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82(18), 3032–3034 (2003)

    Article  Google Scholar 

  78. Rozenberg, M.J., Inoue, I.H., Sanchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92(17), 178302 (2004)

    Article  Google Scholar 

  79. Symanczyk, R., Dittrich, R., Keller, J., Kund, M., Muller, G., Ruf, B., Albarede, P. H., Bournat, S., Bouteille, L., Duch, A.: In: Proceedings of Non-Volatile Memory Technology Symposium, p. 71 (2007)

  80. d’Acapito, F., Souchier, E., Noé, P., Blaise, P., Bernard, M., Jousseaume, V.: Role of Sb dopant in Ag: \(\text{ GeS }_{{\rm x}}\)-based conducting bridge random access memories. Phys. Status Solidi (a) 213(2), 311–315 (2016)

    Article  Google Scholar 

  81. Morales-Masis, M., Van der Molen, S.J., Fu, W.T., Hesselberth, M.B., Van Ruitenbeek, J.M.: Conductance switching in \(\text{ Ag }_{2}\text{ S }\) devices fabricated by in situ sulfurization. Nanotechnology 20(9), 095710 (2009)

    Article  Google Scholar 

  82. Tamura, T., Hasegawa, T., Terabe, K., Nakayama, T., Sakamoto, T., Sunamura, H., Kawaura, H., Hosaka, S., Aono, M.: Switching property of atomic switch controlled by solid electrochemical reaction. Jpn. J. Appl. Phys. 45(4L), L364 (2006)

    Article  Google Scholar 

  83. Kim, H.D., An, H.M., Hong, S.M., Kim, T.G.: Unipolar resistive switching phenomena in fully transparent SiN-based memory cells. Semicond. Sci. Technol. 27(12), 125020 (2012)

    Article  Google Scholar 

  84. Kim, H.D., An, H.M., Hong, S.M., Kim, T.G.: Forming-free SiN-based resistive switching memory prepared by RF sputtering. Phys. Status Solidi (a) 210(9), 1822–1827 (2013)

    Google Scholar 

  85. Kim, H.D., An, H.-M., Lee, E.B., Kim, T.G.: Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans. Device 58(10), 3566–3573 (2011)

    Article  Google Scholar 

  86. Lei, B., Kwan, W.L., Shao, Y., Yang, Y.: Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices. Org. Electron. 10(6), 1048–1053 (2009)

    Article  Google Scholar 

  87. Baek, S., Lee, D., Kim, J., Hong, S.H., Kim, O., Ree, M.: Novel digital nonvolatile memory devices based on semiconducting polymer thin films. Adv. Funct. Mater. 17(15), 2637–2644 (2007)

    Article  Google Scholar 

  88. Lee, D., Baek, S., Ree, M., Kim, O.: Effect of the electrode material on the electrical-switching characteristics of nonvolatile memory devices based on poly (o-anthranilic acid) thin films. IEEE Electron Device Lett. 29(7), 694–697 (2008)

    Article  Google Scholar 

  89. Ha, H., Kim, O.: Bipolar switching characteristics of nonvolatile memory devices based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) thin film. Appl. Phys. Lett. 93(3), 265 (2008)

    Article  MathSciNet  Google Scholar 

  90. Kim, M., Kim, O.: Unipolar resistance switching in polymeric resistance random access memories. Jpn. J. Appl. Phys. 48(6S), 06FD02 (2009)

    Google Scholar 

  91. Kuang, Y., Huang, R., Tang, Y., Ding, W., Zhang, L., Wang, Y.: Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron Device Lett. 31(7), 758–760 (2010)

    Article  Google Scholar 

  92. Huang, R., Tang, Y., Kuang, Y., Ding, W., Zhang, L., Wang, Y.: Resistive switching in organic memory device based on parylene-C with highly compatible process for high-density and low-cost memory applications. IEEE Trans. Electron Devices 59(12), 3578–3582 (2012)

    Article  Google Scholar 

  93. Lai, Y.C., Wang, D.Y., Huang, I.S., Chen, Y.T., Hsu, Y.H., Lin, T.Y., Meng, H.F., Chang, T.C., Yang, Y.J., Chen, C.C., Hsu, F.C., Chen, Y.F.: Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1(3), 552–559 (2013)

    Article  Google Scholar 

  94. ChandraKishore, S., Pandurangan, A.: Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory devices. RSC Adv. 4(20), 9905–9911 (2014)

    Article  Google Scholar 

  95. Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A.K., Ferrari, A.C., Lanza, M.: Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 1600195 (2017)

  96. Puglisi, F.M., Larcher, L., Pan, C., Xiao, N., Shi, Y., Hui, F., Lanza, M.: 2D h-BN based RRAM devices. In: Electron Devices Meeting (IEDM), 2016 IEEE International, pp. 34-8 (2016)

  97. Xie, X., Puglisi, F.M., Larcher, L., Miranda, E., Jiang, L., Shi, Y., Valov, I., McIntyre, P.C., Waser, R., Lanza, M.: Coexistence of grainboundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27(10), 1604811 (2017)

    Article  Google Scholar 

  98. Hu, B., Quhe, R., Chen, C., Zhuge, F., Zhu, X., Peng, S., Chen, X., Pan, L., Wu, Y., Zheng, W., Yan, Q., Lu, J., Li, R.W.: Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J. Mater. Chem. 22(32), 16422–16430 (2012)

    Article  Google Scholar 

  99. Jin, C., Lee, J., Lee, E., Hwang, E., Lee, H.: Nonvolatile resistive memory of ferrocene covalently bonded to reduced graphene oxide. Chem. Commun. 48(35), 4235–4237 (2012)

    Article  Google Scholar 

  100. He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Ciu, P., Li, R.W.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95(23), 232101 (2009)

    Article  Google Scholar 

  101. Zhuge, F., Hu, B., He, C., Zhou, X., Liu, Z., Li, R.W.: Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49(12), 3796–3802 (2011)

    Article  Google Scholar 

  102. Pradhan, A.K., Pradhan, S., Mundle, R., Xiao, B.: Graphene oxide and ZnO/Al: ZnO based transparent resistive switching devices for memristor applications. In: Meeting Abstracts (No. 16, pp. 1494–1494). The Electrochemical Society (2016)

  103. Liu, J., Zeng, Z., Cao, X., Lu, G., Wang, L.H., Fan, Q.L., Huang, W., Zhang, H.: Preparation of \(\text{ MoS }_{2}\)-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 8(22), 3517–3522 (2012)

    Article  Google Scholar 

  104. Xu, X.Y., Yin, Z.Y., Xu, C.X., Dai, J., Hu, J.G.: Resistive switching memories in \(\text{ MoS }_{2}\) nanosphere assemblies. Appl. Phys. Lett. 104(3), 033504 (2014)

    Article  Google Scholar 

  105. Sun, B., Zhao, W., Liu, Y., Chen, P.: Resistive switching effect of \(\text{ Ag }/\text{ MoS }_{2}/\text{ FTO }\) device. Funct. Mater. Lett. 8(01), 1550010 (2015)

    Article  Google Scholar 

  106. Villena, M.A., Jimenez-Molinos, F., Roldán, J.B., Suñé, J., Long, S., Lian, X., Gámiz, F., Liu, M.: An in-depth simulation study of thermal reset transitions in resistive switching memories. J. Appl. Phys. 114(14), 144505 (2013)

    Article  Google Scholar 

  107. Villena, M.A., González, M.B., Jimenez-Molinos, F., Campabadal, F., Roldán, J.B., Suñé, J., Romera, E., Miranda, E.: Simulation of thermal transitions in resistive switching memories including quantum effects. J. Appl. Phys. 115(21), 214504 (2014)

    Article  Google Scholar 

  108. Pengxiao, S., Su, L., Ling, L., Ming, L.: Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. J. Semicond. 35(10), 104007 (2014)

    Article  Google Scholar 

  109. Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 063002 (2016)

    Article  Google Scholar 

  110. Choi, D., Lee, D., Sim, H., Chang, M., Hwang, H.: Reversible resistive switching of \(\text{ SrTiO }_{{\rm x}}\) thin films for nonvolatile memory applications. Appl. Phys. Lett. 88(8), 082904 (2006)

    Article  Google Scholar 

  111. Ismail, M., Huang, C.Y., Panda, D., Hung, C.J., Tsai, T.L., Jieng, J.H., Lin, C.A., Chand, U., Rana, A.M., Ahmed, E., Talib, I., Nadeem, M.Y., Tseng, T.Y.: Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 9(1), 45 (2014)

    Article  Google Scholar 

  112. Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE (2011)

  113. Huang, Y.J., Chao, S.C., Lien, D.H., He, J.H., Lee, S.C.: Dual-functional memory and threshold resistive switching based on the push-pull mechanism of oxygen ions. Sci. Rep. 6, 23945 (2016)

    Article  Google Scholar 

  114. Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped \(\text{ ZrO }_{2}\). IEEE Electron Device Lett. 29(5), 434–437 (2008)

    Article  Google Scholar 

  115. Liu, X., Ji, Z., Tu, D., Shang, L., Liu, J., Liu, M., Xie, C.: Organic nonpolar nonvolatile resistive switching in poly (3, 4-ethylene-dioxythiophene): polystyrenesulfonate thin film. Org. Electron. 10(6), 1191–1194 (2009)

    Article  Google Scholar 

  116. Du, G., Chen, Z., Mao, Q., Ji, Z.: Stable nonpolar resistive switching characteristics in Cu/Cu-dispersed \(\text{ ZrO }_{2}/\text{ Pt }\) memory devices. Appl. Phys. Lett. 110(9), 093507 (2017)

    Article  Google Scholar 

  117. Peng, H.Y., Li, Y.F., Lin, W.N., Wang, Y.Z., Gao, X.Y., Wu, T.: Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci. Rep. 2, 442 (2012)

    Article  Google Scholar 

  118. Baek, Y.J., Hu, Q., Yoo, J.W., Choi, Y.J., Kang, C.J., Lee, H.H., Min, S.H., Kim, H.M., Kim, K.B., Yoon, T.S.: Tunable threshold resistive switching characteristics of \(\text{ Pt }-\text{ Fe }_{2}\text{ O }_{3}\) core-shell nanoparticle assembly by space charge effect. Nanoscale 5(2), 772–779 (2013)

    Article  Google Scholar 

  119. Lanza, M.: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials 7(3), 2155–2182 (2014)

    Article  Google Scholar 

  120. Shi, Y., Ji, Y., Hui, F., Nafria, M., Porti, M., Bersuker, G., Lanza, M.: In situ demonstration of the link between mechanical strength and resistive switching in resistive random-access memories. Adv. Electron. Mater. 1(4), 1400058 (2015)

    Article  Google Scholar 

  121. Kiguchi, M., Ohto, T., Fujii, S., Sugiyasu, K., Nakajima, S., Takeuchi, M., Nakamura, H.: Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136(20), 7327–7332 (2014)

    Article  Google Scholar 

  122. Lanza, M., Zhang, K., Porti, M., Nafria, M., Shen, Z.Y., Liu, L.F., Kang, J.F., Gilmer, D., Bersuker, G.: Grain boundaries as preferential sites for resistive switching in the \(\text{ HfO }_{2}\) resistive random access memory structures. Appl. Phys. Lett. 100(12), 123508 (2012)

    Article  Google Scholar 

  123. Lanza, M., Bersuker, G., Porti, M., Miranda, E., Nafría, M., Aymerich, X.: Resistive switching in hafnium dioxide layers: local phenomenon at grain boundaries. Appl. Phys. Lett. 101(19), 193502 (2012)

    Article  Google Scholar 

  124. Lanza, M.: Conductive Atomic Force Microscopy. Wiley, New York. ISBN: 978-3-527-34091-0 (2017)

  125. Xiao, N., Villena, M.A., Yuan, B., Chen, S., Wang, B., Eliáš, M., Shi, Y., Hui, F., Jing, X., Scheuermann, A., Tang, K., McIntyre, P.C., Lanza, M.: Resistive random access memory cells with a bilayer TiO\(_2\)/SiO\(_{\rm X}\) insulating stack for simultaneous filamentary and distributed resistive switching. Adv. Funct. Mater. 27(19), 1700384 (2017)

    Article  Google Scholar 

  126. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Surf. Sci. 126(1–3), 236–244 (1983)

    Article  Google Scholar 

  127. Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Physical Review B, 31(2), 805 (1985)

  128. Yang, Y., Gao, P., Li, L., Pan, X., Tappertzhofen, S., Choi, S., Waser, R., Valov, I., Lu, W.D.: Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014)

    Google Scholar 

  129. Tung, C.H., Pey, K.L., Ranjan, R., Tang, L.J., Ang, D.S.: Nanometal-oxide-semiconductor field-effect-transistor contact and gate silicide instability during gate dielectric breakdown. Appl. Phys. Lett. 89(22), 221902 (2006)

    Article  Google Scholar 

  130. Valov, Ilia: Redox-based resistive switching memories (ReRAMs): electrochemical systems at the atomic scale. ChemElectroChem 1(1), 26–36 (2014)

    Article  Google Scholar 

  131. Schindler, C., Meier, M., Waser, R., Kozicki, M.N.: Resistive switching in Ag-Ge-Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS’07, pp. 82–85. IEEE

  132. Schindler, C.: Resistive switching in electrochemical metallization memory cells. Ph.D. Dissertation, RWTH Aachen Univ., Aachen, Germany (2009)

  133. Kamalanathan, D., Russo, U., Ielmini, D., ozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30(5), 553–555 (2009)

    Article  Google Scholar 

  134. Aono, M., Hasegawa, T.: The atomic switch. Proc. IEEE 98(12), 2228–2236 (2010)

    Article  Google Scholar 

  135. Ielmini, D., Nardi, F., Cagli, C.: Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22(25), 254022 (2011)

    Article  Google Scholar 

  136. Lian, X., Lanza, M., Rodríguez, A., Miranda E., Suñé, J.: On the properties of conducting filament in ReRAM. In: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, pp. 1–4 (2014)

  137. Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO films. Solid-State Electron. 7(11), 785–790 (1964)

    Article  Google Scholar 

  138. Villena, M.A., Roldán, J.B., Jimenez-Molinos, F., Suñé, J., Long, S., Miranda, E., Liu, M.: A comprehensive analysis on progressive reset transitions in RRAMs. J. Phys. D Appl. Phys. 47(20), 205102 (2014)

    Article  Google Scholar 

  139. Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193–200 (2009)

    Article  Google Scholar 

  140. Ielmini, D., Waser, R.: Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley, New York (2015)

    Google Scholar 

  141. Pan, F., Yin, S., Subramanian, V.: A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Device Lett. 32(7), 949–951 (2011)

    Article  Google Scholar 

  142. Pengxiao, S., Su, L., Ling, L., Ming, L.: Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. J. Semicond. 35(10), 104007 (2014)

    Article  Google Scholar 

  143. Zhao, Y.D., Huang, P., Guo, Z.H., Lun, Z.Y., Gao, B., Liu, X.Y., Kang, J.F.: Atomic Monte-Carlo simulation for CBRAM with various filament geometries. In: 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 153–156. IEEE

  144. Aldana, S., García-Fernández, P., Rodríguez-Fernández, A., Romero-Zaliz, R., González, M.B., Jiménez-Molinos, F., Campabadal, F., Gómez-Campos, F., Roldán, J.B.: A 3D kinetic Monte Carlo simulation study of resistive switching processes in Ni/HfO\(_2\)/Si-n+-based RRAMs. J. Phys. D Appl. Phys. 50(33), 335103 (2017)

    Article  Google Scholar 

  145. Pan, F., Gao, S., Chen, C., Song, C., Zeng, F.: Recent progress in resistive random access memories: materials, switching mechanisms and performance. Mater. Sci. Eng. 83, 1–59 (2014)

    Article  Google Scholar 

  146. Guy, J., Molas, G., Blaise, P., Bernard, M., Roule, A., Le Carval, G., Delaye, V., Toffoli, A., Ghibaudo, G., Clermidy, F., De Salvo, B., Perniola, L.: Investigation of forming, SET, and data retention of conductive-bridge random-access memory for stack optimization. IEEE Trans. Electron Devices 62(11), 3482–3489 (2015)

    Article  Google Scholar 

  147. Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM–Part I: physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)

    Article  Google Scholar 

  148. Yu, S., Guan, X., Wong, H.S.P.: On the switching parameter variation of metal oxide RRAM–Part II: model corroboration and device design strategy. IEEE Trans. Electron Devices 59(4), 1183–1188 (2012)

    Article  Google Scholar 

  149. Bocquet, M., Deleruyelle, D., Muller, C., Portal, J.M.: Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98(26), 263507 (2011)

    Article  Google Scholar 

  150. Ielmini, D., Waser, R.: Resistive Switching, from Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley-VCH, New York (2016)

    Book  Google Scholar 

  151. Fang, X., Yang, X., Wu, J., Yi, X.: A compact SPICE model of unipolar memristive devices. IEEE Trans. Nanotechnol. 12(5), 843–850 (2013)

    Article  Google Scholar 

  152. Guan, X., Yu, S., Wong, H.S.P.: A SPICE compact model of metal oxide resistive switching memory with variations. IEEE Electron Device Lett. 33(10), 1405–1407 (2012)

    Article  Google Scholar 

  153. Hsu, K.H., Ding, W.W., Chiang, M.H.: A compact SPICE model for bipolar resistive switching memory. In: 2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2. IEEE (2013)

  154. Sheridan, P., Kim, K.H., Gaba, S., Chang, T., Chen, L., Lu, W.: Device and SPICE modeling of RRAM devices. Nanoscale 3(9), 3833–3840 (2011)

    Article  Google Scholar 

  155. Vourkas, I., Batsos, A., Sirakoulis, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 43(5), 553–565 (2015)

    Article  Google Scholar 

  156. Tang, K., Meng, A.C., Hui, F., Shi, Y., Petach, T., Hitzman, C., Koh, A.L., Goldhaber-Gordon, D., Lanza, M., McIntyre, P.C.: Distinguishing oxygen vacancy electromigration and conductive filament formation in \(\text{ TiO }_{2}\) resistance switching using liquid electrolyte contacts. Nano Lett. 17(7), 4390–4399 (2017)

    Article  Google Scholar 

  157. Patterson, G.A., Rodriguez-Fernandez, A., Suñé, J., Miranda E., Cagli, C., Perniola, L.: SPICE simulation of 1T1R structures based on a logistic hysteresis operator. In: 2017 Spanish Conference on Electron Devices (CDE), Barcelona, pp. 1–4 (2017)

  158. Jiménez-Molinos, F., Villena, M.A., Roldán, J.B., Roldán, A.M.: A SPICE compact model for unipolar RRAM reset process analysis. IEEE Trans. Electron Devices 62(3), 955–962 (2015)

    Article  Google Scholar 

  159. Menzel, S., Böttger, U., Waser, R.: Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 111(1), 014501 (2012)

    Article  Google Scholar 

  160. González, G., Jiménez-Molinos, F., Roldán, J.B., González, M.B., Campabadal, F.: Transient SPICE simulation of \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }-\text{ n }^{+}\) resistive memories. In: 2016 Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1–6. IEEE (2016)

  161. González-Cordero, G., Roldan, J.B., Jiménez-Molinos, F., Suñé, J., Long, S., Liu, M.: A new model for bipolar RRAMs based on truncated cone conductive filaments, a Verilog-A approach. Semicond. Sci. Technol. 31, 115013 (2016)

    Article  Google Scholar 

  162. Chen, P.Y., Yu, S.: Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 62(12), 4022–4028 (2015)

    Article  MathSciNet  Google Scholar 

  163. González-Cordero, G., Jiménez-Molinos, F., Roldán, J.B., González, M.B., Campabadal, F.: An in-depth study of the physics behind resistive switching in \(\text{ TiN }/\text{ Ti }/\text{ HfO }_{2}/\text{ W }\) structures. J. Vac. Sci. Technol. 35, 01A110 (2017)

    Article  Google Scholar 

  164. Ielmini, D., Cagli, C., Nardi, F.: Resistance transition in metal oxides induced by electronic threshold switching. Appl. Phys. Lett. 94(6), 063–511 (2009)

    Article  Google Scholar 

  165. Yang, Y., Lu, W.: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5(21), 10076–10092 (2013)

    Article  Google Scholar 

  166. Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.-W., Jung, C.U., Seo, S., Lee, M.-J., Noh, T.W.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154 (2008)

    Article  Google Scholar 

  167. Lee, J.S., Lee, S.B., Chang, S.H., Gao, L.G., Kang, B.S., Lee, M.J., Kim, C.J., Noh, T.W., Kahng, B.: Scaling theory for unipolar resistance switching. Phys. Rev. Lett. 105, 205701 (2010)

    Article  Google Scholar 

  168. Wan, H.J., Zhou, P., Ye, L., Lin, Y.Y., Tang, T.A., Wu, H.M., Chi, M.H.: In situ observation of compliance-current overshoot and its effect on resistive switching. IEEE Electron Device Lett. 31(3), 246–248 (2010)

    Article  Google Scholar 

  169. Yu, S., Wong, H.-S.P.: Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 58(5), 1352–1360 (2011)

    Article  Google Scholar 

  170. Meyer, R., Schloss, L., Brewer, J., Lambertson, R., Kinney, W., Sanchez, J., Rinerson, D.: Oxide dual-layer memory element for scalable nonvolatile cross-point memory technology. In: Proceedings of NVSMW, pp. 54–58 (2008)

  171. Wang, S.Y., Huang, C.W., Lee, D.Y., Tseng, T.Y., Chang, T.C.: Multilevel resistive switching in \(\text{ Ti }/\text{ Cu }_{{\rm x}}\text{ O }/\text{ Pt }\) memory devices. J. Appl. Phys. 108(11), 114110 (2010)

    Article  Google Scholar 

  172. Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011)

    Article  Google Scholar 

  173. Atwood, G.: Future directions and challenges for ETox flash memory scaling. IEEE Trans. Device Mater. Reliab. 4(3), 301–305 (2004)

    Article  Google Scholar 

  174. Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (1980)

    Google Scholar 

  175. Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 61(3), 674–681 (2014)

    Article  Google Scholar 

  176. Rottländer, P., Hehn, M., Schuhl, A.: Determining the interfacial barrier height and its relation to tunnel magnetoresistance. Phys. Rev. B 65(5), 054422 (2012)

    Article  Google Scholar 

  177. Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647–648 (1938)

    Article  Google Scholar 

  178. Walczyk, C., Walczyk, D., Schroeder, T., Bertaud, T., Sowinska, M., Lukosius, M., Fraschke, M., Wolansky, D., Tillack, B., Miranda, E., Wenger, C.: Impact of temperature on the resistive switching behavior of embedded \(\text{ HfO }_{2}\)-based RRAM devices. IEEE Trans. Electron Devices 58(9), 3124–3131 (2011)

    Article  Google Scholar 

  179. Tsui, S., Baikalov, A., Cmaidalka, J., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y.: Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85(2), 317–319 (2004)

    Article  Google Scholar 

  180. Rose, A.: Space-charge-limited currents in solids. Phys. Rev. 97(6), 1538 (1955)

    Article  Google Scholar 

  181. Miranda, E.A., Walczyk, C., Wenger, C., Schroeder, T.: Model for the resistive switching effect in \(\text{ HfO }_{2}\) MIM structures based on the transmission properties of narrow constrictions. IEEE Electron Device Lett. 31(6), 609–611 (2010)

    Article  Google Scholar 

  182. Prócel, L.M., Trojman, L., Moreno, J., Crupi, F., Maccaronio, V., Degraeve, R., Goux, L., Simoen, E.: Experimental evidence of the quantum point contact theory in the conduction mechanism of bipolar \(\text{ HfO }_{2}\)-based resistive random access memories. J. Appl. Phys. 114(7), 074509 (2013)

    Article  Google Scholar 

  183. Chen, Y.Y., Goux, L., Clima, S., Govoreanu, B., Degraeve, R., Kar, G.S., Fantini, A., Groeseneken, G., Wounters, D.J., Jurczak, M.: Endurance/retention trade-off on \(\text{ HfO }_{2}/\text{ metal }\) cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3), 1114–1121 (2013)

    Article  Google Scholar 

  184. Kim, H.D., Crupi, F., Lukosius, M., Trusch, A., Walczyk, C., Wenger, C.: Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33(5), 052204 (2015)

    Google Scholar 

  185. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  186. Tekman, E., Ciraci, S.: Theoretical study of transport through a quantum point contact. Phys. Rev. B Condens. Matter 43(9), 7145–7169 (1991)

    Article  Google Scholar 

  187. Miranda, E., Sune, J.: Analytic modeling of leakage current through multiple breakdown paths in \(\text{ SiO }_{2}\) films. In: Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International, pp. 367–379. IEEE (2001)

  188. Lian, X., Long, S., Cagli, C., Buckley, J., Miranda, E., Liu, M., Suñé, J.: Quantum point contact model of filamentary conduction in resistive switching memories. In: 2012 13th International Conference on Ultimate Integration on Silicon (ULIS), pp. 101–104. IEEE (2012)

  189. Long, S., Perniola, L., Cagli, C., Buckley, J., Lian, X., Miranda, E., Pan, F., Liu, M., Suñé, J.: Voltage and power-controlled regimes in the progressive unipolar RESET transition of \(\text{ HfO }_{2}\)-based RRAM. Sci. Rep. 3, 2929 (2013)

    Article  Google Scholar 

  190. Gonzalez, M.B., Rafí, J.M., Beldarrain, O., Zabala, M., Campabadal, F.: Analysis of the switching variability in \(\text{ Ni }/\text{ HfO }_{2}\)-based RRAM devices. IEEE Trans. Device Mater. Reliab. 14(2), 769–771 (2014)

    Article  Google Scholar 

  191. Picos, R., Roldán, J.B., Al Chawa, M.M., García-Fernández, P., Jiménez-Molinos, F., García-Moreno, E.: Semiempirical modeling of reset transitions in unipolar resistive-switching based memristors. Radioeng. J. 24, 420–424 (2015)

    Article  Google Scholar 

  192. Cao, X., Li, X.M., Gao, X.D., Zhang, Y.W., Liu, X.J., Wang, Q., Chen, L.D.: Effects of the compliance current on the resistive switching behavior of \(\text{ TiO }_{2}\) thin films. Appl. Phys. A Mater. Sci. Process. 97(4), 883–887 (2009)

    Article  Google Scholar 

  193. Ambrogio, S., Balatti, S., Gilmer, D.C., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378–2386 (2014)

    Article  Google Scholar 

  194. Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., Ielmini, D.: Statistical fluctuations in hfox resistive-switching memory: Part I—set/reset variability. IEEE Trans. Electron Devices 61(8), 2912–2919 (2014)

    Article  Google Scholar 

  195. Claramunt, S., Wu, Q., Maestro, M., Porti, M., Gonzalez, M.B., Martin-Martinez, J., Campabadal, F., Nafría, M.: Non-homogeneous conduction of conductive filaments in \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }\) resistive switching structures observed with CAFM. Microelectron. Eng. 147, 335–338 (2015)

    Article  Google Scholar 

  196. Guo, X.: Roles of Schottky barrier and oxygen vacancies in the electroforming of \(\text{ SrTiO }_{3}\). Appl. Phys. Lett. 101(15), 152903 (2012)

    Article  Google Scholar 

  197. Marshall, J.M.: On the interpretation of high field effects in chalcogenide thin films. Solid-State Electron. 16(5), 629–631 (1973)

    Article  Google Scholar 

  198. Sun, J., Wu, X., Liu, Q., Liu, M., Sun, L.T.: Real time observation of nanoscale multiple conductive filaments in RRAM by using advanced in-situ TEM. In: 2013 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 560–562. IEEE (2013)

  199. Wu, X., Cha, D., Bosman, M., Raghavan, N., Migas, D.B., Borisenko, V.E., Zhang, X.X., Li, K., Pey, K.L.: Intrinsic nanofilamentation in resistive switching. J. Appl. Phys. 113(11), 114503 (2013)

    Article  Google Scholar 

  200. Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in \(\text{ TiO }_{2}\) resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)

    Article  Google Scholar 

  201. Timsit, R.S.: Electrical contact resistance: properties of stationary interfaces. IEEE Trans. Compon. Packag. Technol. 22(1), 85–98 (1999)

    Article  Google Scholar 

  202. Norberg, G., Dejanovic, S., Hesselbom, H.: Contact resistance of thin metal film contacts. IEEE Trans. Compon. Packag. Technol. 29(2), 371–378 (2006)

    Article  Google Scholar 

  203. Villena, M.A., Roldán, J.B., González, M.B., González-Rodelas, P., Jiménez-Molinos, F., Campabadal, F., Barrera, D.: A new parameter to characterize the charge transport regime in \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }-\text{ n }^{+}\)-based RRAMs. Solid-State Electron. 118, 56–60 (2016)

    Article  Google Scholar 

  204. Tsai, T.M., Chang, K.C., Chang, T.C., Syu, Y.E., Chuang, S.L., Chang, G.W., Liu, G.R., Chen, M.C., Huang, H.C., Liu, S.K., Tai, Y.H., Gan, D.S., Yang, Y.L., Young, T.F., Tseng, B.H., Chen, K.H., Tai, Y.H.: Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications. IEEE Electron Device Lett. 33(12), 1696–1698 (2012)

    Article  Google Scholar 

  205. Chang, W.Y., Lai, Y.C., Wu, T.B., Wang, S.F., Chen, F., Tsai, M.J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008)

    Article  Google Scholar 

  206. https://mavillenasa.wixsite.com/marcoavillena/downloads. Last Accessed 16 July 2017

  207. Villena, M.A., González, M.B., Roldán, J.B., Campabadal, F., Jiménez-Molinos, F., Gómez-Campos, F.M., Suñé, J.: An in-depth study of thermal effects in reset transitions in \(\text{ HfO }_{2}\) based RRAMs. Solid-State Electron. 111, 47–51 (2015)

    Article  Google Scholar 

  208. Villena, M.A., Roldán, J.B., García-Fernández, P., Jiménez-Molinos, F.: Effects of the extension of conductive filaments, a simulation approach. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35(1), 01A105 (2017)

    Google Scholar 

  209. Yang, X., Long, S., Zhang, K., Liu, X., Lian, X., Liu, Q., Lv, H., Wang, M., Xie, H., Sun, H., Sun, P., Suñé, J., Liu, M.: Investigation on the RESET switching mechanism of bipolar \(\text{ Cu }/\text{ HfO }_{2}/\text{ Pt }\) RRAM devices with a statistical methodology. J. Phys. D Appl. Phys. 46, 245107 (2013)

    Article  Google Scholar 

  210. Ielmini, D., Cagli, F., Cagli, C.: Universal characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Device 58(10), 3246–3256 (2011)

    Article  Google Scholar 

  211. Quintero, M., Levy, P., Leyva, A.G., Rozenberg, M.J.: Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98(11), 116601 (2007)

    Article  Google Scholar 

  212. Ye, J.Y., Li, Y.Q., Gao, J., Peng, H.Y., Wu, S.X., Wu, T.: Nanoscale resistive switching and filamentary conduction in NiO thin films. Appl. Phys. Lett. 97(13), 132108 (2010)

    Article  Google Scholar 

  213. Yu, S., Yin Chen, Y., Guan, X., Philip Wong, H.S., Kittl, J.A.: A Monte Carlo study of the low resistance state retention of \(\text{ HfO }_{{\rm x}}\) based resistive switching memory. Appl. Phys. Lett. 100(4), 043507 (2012)

    Article  Google Scholar 

  214. Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 17-3. IEEE (2011)

  215. Chang, Y.F., Ji, L., Wu, Z.J., Zhou, F., Wang, Y., Xue, F., Fowler, B., Yu, E.T., Ho, P.S., Lee, J.C.: Oxygen-induced bi-modal failure phenomenon in \(\text{ SiO }_{\rm x}\)-based resistive switching memory. Appl. Phys. Lett. 103(3), 033521 (2013)

    Article  Google Scholar 

  216. Kim, K.M., Choi, B.J., Jeong, D.S., Hwang, C.S., Han, S.: Influence of carrier injection on resistive switching of \(\text{ TiO }_{2}\) thin films with Pt electrodes. Appl. Phys. Lett. 89(16), 162912 (2006)

    Article  Google Scholar 

  217. Jeong, D.S., Schroeder, H., Waser, R.: Mechanism for bipolar switching in a \(\text{ Pt }/\text{ TiO }_{2}/\text{ Pt }\) resistive switching cell. Phys. Rev. B 79(19), 195317 (2009)

    Article  Google Scholar 

  218. Nagashima, K., Yanagida, T., Oka, K., Kawai, T.: Unipolar resistive switching characteristics of room temperature grown \(\text{ SnO }_{2}\) thin films. Appl. Phys. Lett. 94(24), 242902 (2009)

    Article  Google Scholar 

  219. Peng, H., Wu, T.: Nonvolatile resistive switching in spinel \(\text{ ZnMn }_{2}{\rm O}_{4}\) and ilmenite \(\text{ ZnMnO }_{3}\). Appl. Phys. Lett. 95(15), 152106 (2009)

    Article  Google Scholar 

  220. Shkabko, A., Aguirre, M.H., Marozau, I., Lippert, T., Weidenkaff, A.: Measurements of current-voltage-induced heating in the \(\text{ Al }/\text{ SrTiO }_{3-{\rm x}}\text{ N }_{{\rm y}}/\text{ Al }\) memristor during electroformation and resistance switching. Appl. Phys. Lett. 95(15), 152109 (2009)

    Article  Google Scholar 

  221. Zhang, L., Huang, R., Gao, D., Wu, D., Kuang, Y., Tang, P., Ding, W., Wang, A.Z.H., Wang, Y.: Unipolar resistive switch based on silicon monoxide realized by CMOS technology. IEEE Electron Device Lett. 30(8), 870–872 (2009)

    Article  Google Scholar 

  222. Bersuker, G., Gilmer, D.C., Veksler, D., Yum, J., Park, H., Lian, S., Vandelli, L., Padovani, A., Larcher, L. McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafría, M., Taylor, W., Kirsch, P.D., Jammy, R.: Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In: Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 19-6. IEEE (2010)

  223. Huang, J.J., Kuo, C.W., Chang, W.C., Hou, T.H.: Transition of stable rectification to resistive-switching in \(\text{ Ti }/\text{ TiO }_{2}/\text{ Pt }\) oxide diode. Appl. Phys. Lett. 96(26), 262901 (2010)

    Article  Google Scholar 

  224. Kim, S., Jeong, H.Y., Choi, S.Y., Choi, Y.K.: Comprehensive modeling of resistive switching in the \(\text{ Al }/\text{ TiO }_{{\rm x}}/\text{ TiO }_{2}/\text{ Al }\) heterostructure based on space-charge-limited conduction. Appl. Phys. Lett. 97(3), 033508 (2010)

    Article  Google Scholar 

  225. Lee, S., Kim, H., Yun, D.J., Rhee, S.W., Yong, K.: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95(26), 262113 (2009)

    Article  Google Scholar 

  226. Chung, Y.L., Lai, P.Y., Chen, Y.C., Chen, J.S.: Schottky barrier mediated single-polarity resistive switching in Pt layer-included \(\text{ TiO }_{{\rm x}}\) memory device. ACS Appl. Mater. interfaces 3(6), 1918–1924 (2011)

    Article  Google Scholar 

  227. Hur, J.H., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M.J., Kim, Y.B., Kim, C.J., Chung, U.I.: Modeling for multilevel switching in oxide-based bipolar resistive memory. Nanotechnology 23(22), 225702 (2012)

    Article  Google Scholar 

  228. Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., Ielmini, D.: Resistive switching by voltage-driven ion migration in bipolar RRAM–Part II: Modeling. IEEE Trans. Electron Devices 59(9), 2468–2475 (2012)

    Article  Google Scholar 

  229. Lee, J.K., Jung, S., Park, J., Chung, S.W., Sung Roh, J., Hong, S.J., Cho, I.H., Kwon, H.I., Park, C.H., Park, B.G., Lee, J.H.: Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices. Appl. Phys. Lett. 101(10), 103506 (2012)

    Article  Google Scholar 

  230. Long, B., Li, Y., Mandal, S., Jha, R., Leedy, K.: Switching dynamics and charge transport studies of resistive random access memory devices. Appl. Phys. Lett. 101(11), 113503 (2012)

    Article  Google Scholar 

  231. Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Labbé, C., Rizk, R., Kenyon, A.J.: Electrically tailored resistance switching in silicon oxide. Nanotechnology 23(45), 455201 (2012)

    Article  Google Scholar 

  232. Sasaki, M.: An electron conduction model of resistive memory for resistance dispersion, fluctuation, filament structures, and Set/Reset mechanism. J. Appl. Phys. 112(1), 014501 (2012)

    Article  Google Scholar 

  233. Zhu, W., Chen, T.P., Liu, Y., Fung, S.: Conduction mechanisms at low-and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure. J. Appl. Phys. 112(6), 063706 (2012)

    Article  Google Scholar 

  234. Mickel, P.R., Lohn, A.J., Joon Choi, B., Joshua Yang, J., Zhang, M.X., Marinella, M.J., James, C.D., Stanley Williams, R.: A physical model of switching dynamics in tantalum oxide memristive devices. Appl. Phys. Lett. 102(22), 223502 (2013)

    Article  Google Scholar 

  235. Syu, Y.E., Chang, T.C., Lou, J.H., Tsai, T.M., Chang, K.C., Tsai, M.J., Liu, M., Sze, S.M.: Atomic-level quantized reaction of \(\text{ HfO }_{{\rm x}}\) memristor. Appl. Phys. Lett. 102(17), 172903 (2013)

    Article  Google Scholar 

  236. Linn, E., Siemon, A., Waser, R., Menzel, S.: Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Trans. Circuits Syst. I Regul. Pap. 61(8), 2402–2410 (2014)

    Article  Google Scholar 

  237. Chen, B., Jun, Q.Y., Gao, B., Zhang, F.F., Wei, K.L., Chen, Y.S., Liu, L.F., Liu, X.Y., Kang, J.F., Han, R.Q.: A compact model of resistive switching devices. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1829–1831. IEEE (2010)

  238. Strachan, J.P., Torrezan, A.C., Miao, F., Pickett, M.D., Yang, J.J., Yi, W., Medeiros-Ribeiro, G., Williams, R.S.: State dynamics and modeling of tantalum oxide memristors. IEEE Trans. Electron Devices 60(7), 2194–2202 (2013)

    Article  Google Scholar 

  239. Bocquet, M., Aziza, H., Zhao, W., Zhang, Y., Onkaraiah, S., Muller, C., Reyboz, M., Deleruyelle, D., Clermidy, F., Portal, J.M.: Compact modeling solutions for oxide-based resistive switching memories (OxRAM). J. Low Power Electron. Appl. 4(1), 1–14 (2014)

  240. Larcher, L., Puglisi, F.M., Pavan, P., Padovani, A., Vandelli, L., Bersuker, G.: A compact model of program window in \(\text{ HfO }_{{\rm x}}\) RRAM devices for conductive filament characteristics analysis. IEEE Trans. Electron Devices 61(8), 2668–2673 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Young 1000 Global Talent Recruitment Program of the Ministry of Education of China, the National Natural Science Foundation of China (Grants Nos. 61502326, 41550110223, 11661131002), the Jiangsu Government (Grant No. BK20150343), the Ministry of Finance of China (Grant No. SX21400213) and the Young 973 National Program of the Chinese Ministry of Science and Technology (Grant No. 2015CB932700). The Collaborative Innovation Center of Suzhou Nano Science & Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and the Priority Academic Program Development of Jiangsu Higher Education Institutions are also acknowledged. M. A. Villena acknowledges generous support from the Suzhou NANO-CIC fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Lanza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villena, M.A., Roldán, J.B., Jiménez-Molinos, F. et al. \({ SIM}^2{ RRAM}\): a physical model for RRAM devices simulation. J Comput Electron 16, 1095–1120 (2017). https://doi.org/10.1007/s10825-017-1074-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1074-8

Keywords

Navigation