Skip to main content
Log in

Heterogate junctionless tunnel field-effect transistor: future of low-power devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Gate dielectric materials play a key role in device development and study for various applications. We illustrate herein the impact of hetero (high-k/low-k) gate dielectric materials on the ON-current (\(I_{\mathrm{ON}}\)) and OFF-current (\(I_{\mathrm{OFF}}\)) of the heterogate junctionless tunnel field-effect transistor (FET). The heterogate concept enables a wide range of gate materials for device study. This concept is derived from the well-known continuity of the displacement vector at the interface between low- and high-k gate dielectric materials. Application of high-k gate dielectric material improves the internal electric field in the device, resulting in lower tunneling width with high \(I_{\mathrm{ON}}\) and low \(I_{\mathrm{OFF}}\) current. The impact of work function variations and doping on device performance is also comprehensively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)

    Article  Google Scholar 

  2. Kim, J.J., Roy, K.: Double gate-MOSFET subthreshold circuit for ultralow power applications. IEEE Trans. Electron Devices 51(9), 1468–1474 (2004)

    Article  Google Scholar 

  3. Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)

    Article  Google Scholar 

  4. Huang, Q., Huang, R., Chen, S., Wu, J., Zhan, Z., Qiu, Y., Wang, Y.: Device physics and design of T-gate Schottky barrier tunnel FET with adaptive operation mechanism. Semicond. Sci. Technol. 29(9), 095013 (2014)

    Article  Google Scholar 

  5. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient. Nature 479, 329–337 (2011)

    Article  Google Scholar 

  6. Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51(4), 572–578 (2007)

    Article  Google Scholar 

  7. Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)

    Article  Google Scholar 

  8. Boucart, K., Ionescu, A.M.: A new definition of threshold voltage in tunnel FETs. Solid-State Electron. 52(9), 1318–1323 (2008)

    Article  Google Scholar 

  9. Boucart, K., Ionescu, A.M.: Double gate tunnel FET with ultrathin silicon body and high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  10. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  11. Jhaveri, R., Nagavarapu, V., Woo, J.C.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)

    Article  Google Scholar 

  12. Venkatagirish, N., Tura, A., Jhaveri, R., Chang, H. Y., Woo, J.: The tunnel source MOSFET: a novel asymmetric device solution for ultra-low power applications. In: 2009 IEEE International Conference on IC Design and Technology (pp. 155–159). IEEE, Piscataway (2009)

  13. Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)

    Article  Google Scholar 

  14. Kanungo, S., Rahaman, H., Gupta, P.S., Dasgupta, P.S.: A detail simulation study on extended source ultra-thin body double-gated tunnel FET. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC, December) (pp. 1–4). IEEE, Piscataway (2012)

  15. Wang, X.D., Xiong, Y., Tang, M.H., Peng, L., Xiao, Y.G., Xu, X.Y., He, J.H.: A Si tunnel field-effect transistor model with a high switching current ratio and steep sub-threshold swing. Semicond. Sci. Technol. 29(9), 095016 (2014)

    Article  Google Scholar 

  16. Qiu, Y., Wang, R., Huang, Q., Huang, R.: A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284–1291 (2014)

    Article  Google Scholar 

  17. Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  Google Scholar 

  18. Lee, C.W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)

    Article  Google Scholar 

  19. Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Razavi, P.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)

    Article  Google Scholar 

  20. Asthana, P.K., Ghosh, B., Rahi, S.B.M., Goswami, Y.: Optimal design for a high performance H-JLTFET using HfO\(_2\) as a gate dielectric for ultra low power applications. RSC Adv. 4(43), 22803–22807 (2014)

    Article  Google Scholar 

  21. Rahi, S.B., Ghosh, B., Asthana, P.: A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET. J. Semicond. 35(11), 114005 (2014)

    Article  Google Scholar 

  22. Rahi, S.B., Ghosh, B., Bishnoi, B.: Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36(3), 034002 (2015)

    Article  Google Scholar 

  23. Rahi, S.B., Ghosh, B.: High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 5(67), 54544–54550 (2015)

    Article  Google Scholar 

  24. Villani, F., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs. Solid-State Electron. 113, 86–91 (2015)

    Article  Google Scholar 

  25. Silvaco, Version 5.15.32.R. (2015). http://www.silvaco.com (2015, Jul.) Atlas User’s Manual. http://www.silvaco.com

  26. Robertson, J.: High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28(3), 265–291 (2004)

    Article  Google Scholar 

  27. Holtij, T., Graef, M., Kloes, A., Iñíguez, B.: Modeling and performance study of nanoscale double gate junctionless and inversion mode MOSFETs including carrier quantization effects. Microelectron. J. 45(9), 1220–1225 (2014)

    Article  Google Scholar 

  28. Graef, M., Holtij, T., Hain, F., Kloes, A., Iñíguez, B.: A 2D closed form model for the electrostatics in hetero-junction double-gate tunnel-FETs for calculation of band-to-band tunneling current. Microelectron. J. 45(9), 1144–1153 (2014)

    Article  Google Scholar 

  29. Dutta, T., Kumar, S., Rastogi, P., Agarwal, A., Chauhan, Y.S.: Impact of channel thickness variation on bandstructure and source-to-drain tunneling in ultra-thin body III-V MOSFETs. IEEE J. Electron Devices Soc. 4(2), 66–71 (2016)

  30. Yadav, C., Duarte, J.P., Khandelwal, S., Agarwal, A., Hu, C., Chauhan, Y.S.: Capacitance modeling in III-V FinFETs. IEEE Trans. Electron Devices 62(11), 3892–3897 (2015)

    Article  Google Scholar 

  31. Patel, N., Ramesha, A., Mahapatra, S.: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron. J. 39(12), 1671–1677 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiromani Balmukund Rahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahi, S.B., Asthana, P. & Gupta, S. Heterogate junctionless tunnel field-effect transistor: future of low-power devices. J Comput Electron 16, 30–38 (2017). https://doi.org/10.1007/s10825-016-0936-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0936-9

Keywords

Navigation