Skip to main content

Advertisement

Log in

Challenging the gold standard for 3D-QSAR: template CoMFA versus X-ray alignment

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

X-ray-based alignments of bioactive compounds are commonly used to correlate structural changes with changes in potencies, ultimately leading to three-dimensional quantitative structure–activity relationships such as CoMFA or CoMSIA models that can provide further guidance for the design of new compounds. We have analyzed data sets where the alignment of the compounds is entirely based on experimentally derived ligand poses from X-ray-crystallography. We developed CoMFA and CoMSIA models from these X-ray-determined receptor-bound conformations and compared the results with models generated from ligand-centric Template CoMFA, finding that the fluctuations in the positions and conformations of compounds dominate X-ray-based alignments can yield poorer predictions than those from the self-consistent template CoMFA alignments. Also, when there exist multiple different binding modes, structural interpretation in terms of binding site constraints can often be simpler with template-based alignments than with X-ray-based alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Martin YC (1998). 3D QSAR: current state, scope, and limitations. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design. Springer, Netherlands, pp 3–23

  2. Sippl W (2002) Development of biologically active compounds by combining 3D QSAR and structure-based design methods. J Comput Aided Mol 16:825–830

    Article  CAS  Google Scholar 

  3. Matter H, Kotsonis P, Klingler O, Strobel H, Fröhlich LG, Frey A, Pfleiderer W, Schmidt HH (2002) Structural requirements for inhibition of the neuronal nitric oxide synthase (NOS-I): 3D-QSAR analysis of 4-oxo-and 4-amino-pteridine-based inhibitors. J Med Chem 45:2923–2941

    Article  CAS  Google Scholar 

  4. Weber A, Böhm M, Supuran CT, Scozzafava A, Sotriffer CA, Klebe G (2006) 3D QSAR selectivity analyses of carbonic anhydrase inhibitors: insights for the design of isozyme selective inhibitors. J Chem Inf Model 46:2737–2760

    Article  CAS  Google Scholar 

  5. Hillebrecht A, Klebe G (2008) Use of 3D QSAR models for database screening: a feasibility study. J Chem Inf Model 48:384–396

    Article  CAS  Google Scholar 

  6. Clark RD (2009) Prospective ligand-and target-based 3D QSAR: state of the art 2008. Curr Top Med Chem 9:791–810

    Article  CAS  Google Scholar 

  7. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishof CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  8. Scior T, Bender A, Tresadern G, Medina-Franco JL, Martínez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881

    Article  CAS  Google Scholar 

  9. Damm-Ganamet KL, Smith RD, Dunbar JB, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model 53:1853–1870

    Article  CAS  Google Scholar 

  10. Cramer RD, Wendt B (2014) Template CoMFA: the 3D-QSAR Grail? J Chem Inf Model 54:660–671

    Article  CAS  Google Scholar 

  11. Jilek RJ, Cramer RD (2004) Topomers: a validated protocol for their self-consistent generation. J Chem Inf Comput Sci 44:1221–1227

    Article  CAS  Google Scholar 

  12. Brown SP, Muchmore SW (2009) Large-scale application of high-throughput molecular mechanics with poisson–boltzmann surface area for routine physics-based scoring of protein-ligand complexes. J Med Chem 52:3159–3165

    Article  CAS  Google Scholar 

  13. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  14. Mittal RR, Harris L, McKinnon RA, Sorich MJ (2009) Partial charge calculation method affects CoMFA QSAR prediction accuracy. J Chem Inf Model 49:704–709

    Article  CAS  Google Scholar 

  15. Wendt MD, Rockway TW, Geyer A, McClellan W, Weitzberg M, Zhao X, Mantei R, Nienaber VL, Stewart K, Klinghofer V, Giranda VL (2004) Identification of novel binding interactions in the development of potent, selective 2-naphthamidine inhibitors of urokinase. Synthesis, structural analysis, and SAR of N-phenyl amide 6-substitution. J Med Chem 47:303–324

    Article  CAS  Google Scholar 

  16. Nienaber VL, Davidson D, Edalji R, Giranda VL, Klinghofer V, Henkin J, Magdalinos P, Mantei R, Merrick S, Severin JM, Smith RA, Stewart K, Walter K, Wang J, Wendt M, Weitzberg M, Zhao X, Rockway T (2000) Structure-directed discovery of potent non-peptidic inhibitors of human urokinase that access a novel binding subsite. Structure 8:553–563

    Article  CAS  Google Scholar 

  17. Wendt MD, Geyer A, McClellan WJ, Rockway TW, Weitzberg M, Zhao X, Mantei R, Stewart K, Nienaber V, Klinghofer V, Giranda VL (2004) Interaction with the S1β-pocket of urokinase: 8-heterocycle substituted and 6, 8-disubstituted 2-naphthamidine urokinase inhibitors. Bioorg Med Chem Lett 14:3063–3068

    CAS  Google Scholar 

  18. Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci USA 94:13420–13425

    Article  CAS  Google Scholar 

  19. Xin Z, Oost TK, Abad-Zapatero C, Hajduk PJ, Pei Z, Szczepankiewicz BG, Hutchins CB, Ballaron SJ, Stashko MA, Lubben T, Trevillyan JM, Jirouseka MR, Liu G (2003) Potent, selective inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 13:1887–1890

    Article  CAS  Google Scholar 

  20. Liu G, Xin Z, Pei Z, Hajduk PJ, Abad-Zapatero C, Hutchins CW, Zhao H, Lubben TH, Ballaron LJ, Haasch DL, Kaszubska W, Rondinone CM, Trevillyan TM, Jirousek MR (2003) Fragment screening and assembly: a highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor. J Med Chem 46:4232–4235

    Article  CAS  Google Scholar 

  21. Liu G, Xin Z, Liang H, Abad-Zapatero C, Hajduk PJ, Janowick DA, Szczepankiewicz BG, Pei Z, Hutchins CW, Ballaron SJ, Stashko MA, Lubben TH, Berg CE, Rondinone CM, Trevillyan JM, Jirousek MR (2003) Selective protein tyrosine phosphatase 1B inhibitors: targeting the second phosphotyrosine binding site with non-carboxylic acid-containing ligands. J Med Chem 46:3437–3440

    Article  CAS  Google Scholar 

  22. Wang LE, Sullivan GM, Hexamer LA, Hasvold LA, Thalji R, Przytulinska M, Tao ZF, Li G, Chen Z, Xiao Z, Gu WZ, Xue J, Bui MH, Merta P, Kovar P, Bouska JJ, Zhang H, Park C, Stewart KD, Sham HL, Sowin TJ, Rosenberg SH, Lin NH (2007) Design, synthesis, and biological activity of 5, 10-dihydro-dibenzo [b, e][1, 4] diazepin-11-one-based potent and selective Chk-1 inhibitors. J Med Chem 50:4162–4176

    Article  CAS  Google Scholar 

  23. Tao ZF, Li G, Tong Y, Chen Z, Merta P, Kovar P, Johnson E, Park C, Judge R, Rosenberg S, Sowi T, Lin NH (2007) Synthesis and biological evaluation of 4′-(6,7-disubstituted-2,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-biphenyl-4-ol as potent Chk1 inhibitors. Bioorg Med Chem Lett 17:4308–4315

    Article  CAS  Google Scholar 

  24. Teng M, Zhu J, Johnson MD, Chen P, Kornmann J, Chen E, Blasina A, Register J, Anderes K, Rogers CS (2007) Structure-based design of (5-Arylamino-2 H-pyrazol-3-yl)-biphenyl-2′, 4′-diols as novel and potent human CHK1 inhibitors. J Med Chem 50:5253–5256

    Article  CAS  Google Scholar 

  25. Mittal RR, McKinnon RA, Sorich MJ (2009) The effect of molecular fields, lattice spacing and analysis options on CoMFA predictive ability. QSAR Comb Sci 28:637–644

    Article  CAS  Google Scholar 

  26. Davis AM, Teague SJ, Kleywegt GJ (2003) Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed 42:2718–2736

    Article  CAS  Google Scholar 

  27. Brunger AT (1997) Methods Enzymol 277:366–396

    Article  CAS  Google Scholar 

  28. Sippl W (2010) 3D-QSAR–applications, recent advances, and limitations. In: Recent advances in QSAR studies. Springer, Netherlands, pp 103–125

  29. DePriest SA, Mayer D, Naylor CB, Marshall GR (1993) 3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: a comparison of CoMFA models based on deduced and experimentally determined active site geometries. J Am Chem Soc 115:5372–5384

    Article  CAS  Google Scholar 

  30. Waller CL, Oprea TI, Giolitti A, Marshall GR (1993) Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J Med Chem 36:4152–4160

    Article  CAS  Google Scholar 

  31. Doweyko AM (2004) 3D-QSAR illusions. J Comput Aided Mol 18:587–596

    Article  CAS  Google Scholar 

  32. Tuccinardi T, Ortore G, Santos MA, Marques SM, Nuti E, Rossello A, Martinelli A (2009) Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors. J Chem Inf Model 49:1715–1724

    Article  CAS  Google Scholar 

  33. Cramer RD (2011) Rethinking 3D-QSAR. J Comput Aided Mol 25:197–201

    Article  CAS  Google Scholar 

  34. Wendt B, Uhrig U, Bös F (2011) Capturing structure–activity relationships from chemogenomic spaces. J Chem Inf Model 51:843–851

    Article  CAS  Google Scholar 

  35. Wendt B, Mülbaier M, Wawro S, Schultes C, Alonso J, Janssen B, Lewis J (2011) Toluidinesulfonamide hypoxia-induced factor 1 inhibitors: alleviating drug–drug interactions through use of pubchem data and comparative molecular field analysis guided synthesis. J Med Chem 54:3982–3986

    Article  CAS  Google Scholar 

  36. Cramer RD, Wendt B (2007) Pushing the boundaries of 3D-QSAR. J Comput Aided Mol 21:23–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Yvonne Martin for providing quality data for the X-ray structures and for helpful comments on the manuscript. The reviewers are thanked for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Wendt.

Appendix

Appendix

See Tables 6, 7, 8, 9, 10, 11 and 12.

Table 6 Urokinase subset model statistics
Table 7 PTP-1B subset model statistics
Table 8 Chk1 subset model statistics
Table 9 Fraction of variance
Table 10 External validation—predictions for Urokinase test set
Table 11 External validation—predictions for PTP-1B test set
Table 12 External validation—predictions for CHK-1 test set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendt, B., Cramer, R.D. Challenging the gold standard for 3D-QSAR: template CoMFA versus X-ray alignment. J Comput Aided Mol Des 28, 803–824 (2014). https://doi.org/10.1007/s10822-014-9761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9761-z

Keywords

Navigation