Skip to main content

Advertisement

Log in

Biotechnical portfolio management of mixed-species forests

  • Published:
Journal of Bioeconomics Aims and scope

Abstract

Based upon the historical data—obtained from the French National Forest Inventory—on the tree species’ productivities, assimilated to be a measure of return on investment, as well as on their variances as sources of risk, we apply the portfolio selection theory in order to optimize the species distributions in France. We thus determine the optimal return-risk combinations of tree species and map them per administrative department. We also estimate the resistance of optimal portfolios using the species’ probabilities of presence. Our results show that greater weights in the optimal portfolios match with higher probabilities of presence, implying that foresters have incentives to invest in the most resilient species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Equally, the number of species has been compelled by the availability of probabilities of presence, as described hereafter.

  2. This is common practice among forest data managers.

References

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. T., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684.

  • Andreu, L., Gutiérrez, E., Macias, M., Ribas, M., Bosch, O., & Camarero, J. (2007). Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 13, 1–12.

    Article  Google Scholar 

  • Badeau, V., Dupouey, J.L., Cluzeau, C., Drapier, J., & Lebas, C. (2010). Climate change and the biogeography of French tree species: first result and perspectives. In Forests, carbon cycle and climate change (pp. 231–252), Editions Quae, c/o INRA; Versailles; France.

  • Bigler, C., Gricar, J., Bugmann, H., & Cufar, K. (2004). Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management, 199(2–3), 183–190.

    Article  Google Scholar 

  • Bosu, P. P., Cobbinah, J. R., Nichols, J. D., Nkrumah, E. E., & Wagner, M. R. (2006). Survival and growth of mixed plantations of Milicia excelsa and Terminalia superba 9 years after planting in Ghana. Forest Ecology and Management, 233(2–3), 352–357.

    Article  Google Scholar 

  • Bréda, N., Cochard, H., Dreyer, E., & Granier, A. (1993). Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annals of Forest Science, 50, 571–582.

    Article  Google Scholar 

  • Buchman, R. G., Pederson, S. P., & Walters, N. R. (1983). A tree survival model with application to species of the great lakes region. Canadian Journal of Forest Research, 13(4), 601–608.

    Article  Google Scholar 

  • Buongiorno, J., Peyron, J. L., Houllier, F., & Bruciamacchie, M. (1995). Growth and management of mixed-species, uneven-aged forests in the French Jura: implications for economic returns and tree diversity. Forest Science, 41(3), 397–429.

    Google Scholar 

  • Charru, M., Seynave, I., Morneau, F., & Bontemps, J. D. (2010). Recent changes in forest productivity: An analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecology and Management, 260(5), 864–874.

    Article  Google Scholar 

  • Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E., François, C., Gritti, E. S., Legay, M., Pagé, C., Thuiller, W., Viovy, N., & Leadley, P. (2012). Climate change impacts on tree ranges: Model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 15(6), 533–544.

  • Clasen, C., Griess, V. C., & Knoke, T. (2011). Financial consequences of losing admixed tree species: A new approach to value increased financial risks by ungulate browsing. Forest Policy and Economics, 13(6), 503–511.

    Article  Google Scholar 

  • Dale, V. H., Joyce, L. A., McNulty, S., & Neilson, R. P. (2000). The interplay between climate change, forests, and disturbances. Science of the Total Environment, 262(3), 201–204.

    Article  Google Scholar 

  • Dobbertin, M. (2005). Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research, 124(4), 319–333.

    Article  Google Scholar 

  • Evans, J. (2005). Growth rates over four rotations of pine in Swaziland. International Forestry Review, 7(4), 305–310.

    Article  Google Scholar 

  • Franklin, J. F., Norris, L. A., Berg, D. R., & Smith, G. R. (1999). The history of DEMO: an experiment in regeneration harvest of Northwestern forest ecosystems. Northwest Science, 73, 3–11.

    Google Scholar 

  • Griess, V. C., & Knoke, T. (2011). Growth performance, wind-throw, insects-meta-analyses of parameters influencing performance of mixed Species stands in boreal and northern temperate biomes. Revue canadienne de recherche forestière, 41(6), 1141–1159.

    Article  Google Scholar 

  • Halpern, C. B., Evans, S. A., Nelson, C. R., McKenzie, D., Liguori, D. A., Hibbs, D. E., & Halaj, M. G. (1999). Response of forest vegetation to varying levels and patterns of green-tree retention: An overview of a long-term experiment. Northwest Science, 73, 27–44.

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207.

    Article  Google Scholar 

  • Heres, A.-M., Martinez-Vilalta, J., & Claramunt Lopez, B. (2012). Growth patterns in relation to drought-induced mortality at two scots pine (Pinus sylvestris L.) sites in NE Iberian peninsula. Trees, 26(2), 621–630.

    Article  Google Scholar 

  • Hogg, E. T., Brandt, J. P., & Kochtubajda, B. (2005). Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Canadian Journal of Forest Research, 35(3), 610–622.

    Article  Google Scholar 

  • Iverson, L. R., Prasad, A., & Schwartz, M. W. (1999). Modeling potential future individual tree-species distribution in the eastern United States under a climate change scenario: A case study with Pinus virginiana. Ecological Modelling, 115, 77–93.

    Article  Google Scholar 

  • Jacobsen, J. B., & Thorsen, B. J. (2003). A Danish example of optimal thinning strategies in mixed-species forest under changing growth conditions caused by climate change. Forest Ecology and Management, 180(1–3), 375–388.

    Article  Google Scholar 

  • Kelty, M.J. (1992). Comparative productivity of monocultures and mixed-species stands, In The ecology and silviculture of mixed-species forests, Kluwer Academic Publishers, 31 Mar 1992.

  • Knapp, P. A., Soulé, P. T., & Grissino-Mayer, H. D. (2001). Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Global Change Biology, 7(8), 903–917.

    Article  Google Scholar 

  • Knoke, T. (2008). Mixed forests and finance—Methodological approaches. Ecological Economics, 65, 590–601.

    Article  Google Scholar 

  • Knoke, T., Stimm, B., Ammer, C., & Moog, M. (2005). Mixed forests reconsidered: A forest economics contribution on an ecological concept. Forest Ecology and Management, 213, 102–116.

    Article  Google Scholar 

  • Knoke, T., Ammer, C., Stimm, B., & Mosandl, R. (2008). Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. European Journal of Forest Research, 127(2), 89–101.

    Article  Google Scholar 

  • Legay, M., Cordonnier, T., & Dhôte, J. F. (2008). Des forêts mélangées pour composer avec les changements climatiques. Revue Forestière Française LX, 2, 181–190.

    Google Scholar 

  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709.

  • Linares, J., & Camarero, J. (2012). Growth patterns and sensitivity to climate predict silver fir decline in the Spanish pyrenees. European Journal of Forest Research, 131(4), 1001–1012.

    Article  Google Scholar 

  • Lu, H. C., & Buongiorno, J. (1993). Long- and short-term effects of alternative cutting regimes on economic returns and ecological diversity in mixed-species forests. Forest Ecology and Management, 58(3–4), 173–192.

    Article  Google Scholar 

  • McDowell, N., Allen, C. D., & Marshall, L. (2010). Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Global Change Biology, 16, 399–415.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Mayer, P., Brang, P., Dobbertin, M., Hallenbarter, D., Renaud, J. P., Walthert, L., & Zimmermann, S. (2005). Forest storm damage is more frequent on acidic soils. Annals of Forest Science, 62, 303–311.

  • Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and the forests of the future: Managing in the face of uncertainty. Ecological Applications, 17(8), 2145–2151.

    Article  Google Scholar 

  • Morin, X., Fahse, L., Scherer-Lorenzen, M., & Bugmann, H. (2011). Tree species richness promotes productivity in European temperate forests through a strong complementarity between species. Ecology Letters, 14, 1211–1219.

    Article  Google Scholar 

  • Morneau, F., Duprez, C., & Hervé, J. C. (2008). Les forêts mélangées en France métropolitaine, caractérisation à partir des résultats de l’Inventaire Forestier National. Revue Forestière Française, 2, 107–120.

    Google Scholar 

  • Neuner, S., Beinhofer, B., & Knoke, T. (2013). The optimal tree species composition for a private forest enterprise—Applying the theory of portfolio selection. Scandinavian Journal of Forest Research, 28(1), 38–48.

    Article  Google Scholar 

  • Nichols, J. D., Bristow, M., & Vanclay, K. K. (2006). Mixed-species plantations: Prospects and challenges. Forest Ecology and Management, 233(2–3), 383–390.

    Article  Google Scholar 

  • Office National des Forêts. (2013). Chiffres-clés en Lorraine. ONF. [Online]. Retrieved August 19, 2013, from http://www.onf.fr/lorraine/sommaire/onf/chiffres-cles/@@index.html.

  • Ogle, K., Whitham, T. G., & Cobb, N. S. (2000). Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology, 81(11), 3237–3243.

    Article  Google Scholar 

  • Powers, R. F. (1999). On the sustainable productivity of planted forests. New Forests, 17, 263–306.

    Article  Google Scholar 

  • Robert, N., Vidal, C., Colin, A., Hervé, J. C., Hamza, N., & Cluzeau, C. (2010). France. In E. Tomppo, T. Gschwantner, M. Lawrence, & R. E. McRoberts (Eds.), National forest inventories pathways for common reporting (pp. 207–221). Heidelberg: Springer.

    Google Scholar 

  • Roessiger, J., Griess, V. C., & Knoke, T. (2011). May risk aversion lead to near-natural forestry? A simulation study. Forestry, 84(5), 527–537.

    Article  Google Scholar 

  • Roman-Amat, B. (2007). Préparer les forêts françaises au changement climatique. Rapport à MM. Les Ministères de l’Agriculture et de la Pêche et de l’Ecologie, du Développement et de l’Aménagement Durables, December.

  • Schou, E., Jacobsen, J. B., & Kristensen, K. L. (2012). An economic evaluation of strategies for transforming even-aged into near-natural forestry in a conifer-dominated forest in Denmark. Forest Policy and Economics, 20, 89–98.

    Article  Google Scholar 

  • Schütz, J. P., Götz, M., Schmid, W., & Mandallaz, D. (2006). Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. European Journal of Forest Research, 125, 291–302.

    Article  Google Scholar 

  • Slimani, S., Derridj, A., & Gutiérrez, E. (2014). Ecological response of Cedrus atlantica to climate variability in the Massif of Guetiane (Algeria). Forest Systems, 23(3), 448–460.

    Article  Google Scholar 

  • Soulé, P. T., & Knapp, P. A. (2006). Radial growth rate increases in naturally occurring ponderosa pine trees: A late-20th century \({\rm CO}_2\) fertilization effect? New Phytologist, 171(2), 379–390.

    Article  Google Scholar 

  • Spiecker, H. (2000). Growth of Norway spruce under changing environmental conditions in Europe. In E. Klimo, H. Hager, & J. Kylhavy (Eds.), Spruce monocultures in Central Europe—Problems and prospects, EFI proceedings, no. 33.

  • Suarez, M. L., Ghermandi, L., & Kitzberger, T. (2004). Factors predisposing episodic drought-induced tree mortality in Nothofagus-site, climatic sensitivity and growth trends. Journal of Ecology, 92(6), 954–966.

    Article  Google Scholar 

  • Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997a). The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300–1302.

    Article  Google Scholar 

  • Tilman, D., Lehman, C., & Thomson, K. (1997b). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences, 94, 1857–1861.

    Article  Google Scholar 

  • Thomson, T. A. (1991). Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. Forest Science, 37, 461–480.

    Google Scholar 

  • Vettenranta, J. (1996). Effect of species composition on economic return in a mixed stand of Norway spruce and Scots pine. Silva Fennica, 30(1), 47–60.

    Article  Google Scholar 

  • Vivin, P., Aussenac, G., & Levy, G. (1993). Differences in drought resistance among 3 deciduous oak species grown in large boxes. Annals of Forest Science, 6, 571–582.

    Google Scholar 

  • Walker, K. V., Davis, M. B., & Sugita, S. (2002). Climate change and shifts in potential tree species range limits in the Great Lakes Region. Journal of Freat Lakes Research, 28, 555–567.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant overseen by the French National Research Agency through the Laboratory of Excellence ARBRE, a part of the Investments for the Future Program (ANR 11 – LABX-0002-01). It was also supported by the French National Forestry Office through the Forests for Tomorrow International Teaching and Research Chair. The authors are endebted to Edwin van der Werf (Wageningen University) for his comments and suggestions toward this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marielle Brunette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunette, M., Dragicevic, A., Lenglet, J. et al. Biotechnical portfolio management of mixed-species forests. J Bioecon 19, 223–245 (2017). https://doi.org/10.1007/s10818-017-9247-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-017-9247-x

Keywords

JEL Classification

Navigation