Skip to main content

Economics of Mixed Forests

  • Chapter
  • First Online:
Mixed-Species Forests

Abstract

This chapter introduces the economic framework of, but also challenges to, modern financial theory when applied in environmental and particularly forest science studies. It demonstrates the characteristics of financial models to capture the effects of mixing tree species. In addition, the chapter demonstrates how a portfolio-based approach for deriving the long-term forest structure as applied to the example of species composition and timber quality could form a new tool for forest management planning at the company level. Furthermore, it is shown how transitioning to the stand level through the consideration of interactions between tree species will alter the results compared to forest-level studies. The chapter concludes with advances in modelling the economics of near-natural forestry, where mixing of tree species is a key issue. This is done by means of optimising the distribution of timber harvests over time simultaneously with the composition of tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1990/markowitz-lecture.pdf

  2. 2.

    Assmann (1970, p. 469) concluded from his comparison of the increment in rotation forests (called high forests) and selection forests (as an important representative of continuous cover forests): ‘The high forest stand, …, is not only superior in current increment over the last 16 years, and that by as much as 19%, but assuredly also in m.a.i. [mean annual increment] for the same harvesting age. Contrary to current widely prevailing views, the pronounced vertical layering of selection forests has an efficiency-reducing effect …’.

References

  • Abson DJ, Fraser EDG, Benton TG (2013) Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric Food Secur 2:2

    Article  Google Scholar 

  • Aerts JCJH, Botzen W, van der Veen A, Krywkow J, Werners S (2008) Dealing with uncertainty in flood management through diversification. Ecol Soc 13:41

    Article  Google Scholar 

  • Andreassen K, Øyen BH (2002) Economic consequences of three silvicultural methods in uneven-aged mature coastal spruce forests of central Norway. Forestry 75:483–488

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Studies in the organic production, structure, increment and yield of forest stands. Oxford University Press, Oxford

    Google Scholar 

  • Baader G (1945) Forsteinrichtung als nachhaltige Betriebsführung und Betriebsplanung. Sauerländer’s, Frankfurt a.M.

    Google Scholar 

  • Beimgraben T (2002) Auftreten von Wachstumsspannungen im Stammholz der Buche (Fagus sylvatica L.) und Möglichkeiten zu deren Verminderung. PhD-thesis at the Albert-Ludwigs-University, Freiburg im Breisgau

    Google Scholar 

  • Beinhofer B (2009) Zur Anwendung der Portfoliotheorie in der Forstwissenschaft – Finanzielle Optimierungsansätze zur Bewertung von Diversifikationseffekten. PhD-thesis at the Technische Universität München

    Google Scholar 

  • Beinhofer B, Knoke T (2010) Finanziell vorteilhafte Douglasienanteile im Baumartenportfolio. Forstarchiv 81:255–265

    Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  Google Scholar 

  • Biber P, Knoke T, Pretzsch H (2013) Eine waldwachstumskundlich-ökonomische Simulationsstudie zu Effekten der Baumartenmischung Fichte-Buche: Konzept und erste ertragskundliche Ergebnisse. DVFFA, Sektion Ertragskunde: Beiträge zur Jahrestagung 2013

    Google Scholar 

  • Bleile K (2006) Vorkommen und Analyse von Zugholz bei Buche (Fagus sylvatica L.) als Ursache von Spannungen im Rundholz und Verwerfungen des Schnittholzes. PhD-thesis at the Albert-Ludwigs-University, Freiburg im Breisgau

    Google Scholar 

  • Brandl H (1989) Ergänzende Untersuchungen zur Ertragslage der Baumarten Fichte, Kiefer, Buche und Eiche in Baden-Württemberg. Allgemeine Forst- und Jagd-Zeitung 160:91–98

    Google Scholar 

  • Bristow M, Nichols JD, Vanclay JK (2006) Improving productivity in mixed-species plantations. For Ecol Manag 233:193–194

    Article  Google Scholar 

  • Castro LM, Calvas B, Hildebrandt P, Knoke T (2013) Avoiding the loss of shade coffee plantations: how to derive conservation payments for risk-averse land-users. Agrofor Syst 87:331–347

    Article  Google Scholar 

  • Castro LM, Calvas B, Knoke T (2015) Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios. PLoS One 10(3):e0120384. doi:10.1371/journal.pone.0120384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang SJ (1998) A generalized Faustmann model for the determination of the optimal harvest age. Can J For Res 48:652–659

    Article  Google Scholar 

  • Chang SJ, von Gadow K (2010) Application of the generalized Faustmann model to uneven-aged forest management. J For Econ 16:313–325

    Article  Google Scholar 

  • Clasen C, Griess VC, Knoke T (2011) Financial consequences of losing admixed tree species: a new approach to value increased financial risks by ungulate browsing. Forest Policy Econ 13(6):503–511. doi:10.1016/j.forpol.2011.05.005

    Article  Google Scholar 

  • Cubbage F, Mac Donagh P, Sawinski Junior J, Rubilar R, Donoso P, Ferreira A, Hoeflich V, Morales Olmos V, Ferreira G, Balmelli G, Siry J, Noemi Baez M, Alvarez J (2007) Timber investment returns for selected plantations and native forests in South America and the Southern United States. New For 33:237–255

    Article  Google Scholar 

  • Deegen P, Hung BC, Mixdorf U (1997) Ökonomische Modellierung der Baumartenwahl bei Unsicherheit der zukünftigen Temperaturentwicklung. Forstarchiv 68:194–205

    Google Scholar 

  • Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. For Policy Econ 2:157–166

    Article  Google Scholar 

  • Dieter M, Moog M, Borchert H (2001) Considering serious hazards in forest management decision-making. In: Gadow KV (ed) Risk analysis in forest management. Kluwer, Dordrecht, pp 201–232. doi:10.1007/978-94-017-2905-5_8

    Chapter  Google Scholar 

  • Dixit AK, Pindyck RS (1995) The options approach to capital investment. Havard Bus Rev 73:105–115

    Google Scholar 

  • Djanibekov U, Khamzina A (2016) Stochastic economic assessment of afforestation on marginal land in irrigated farming system. Environ Resour Econ 63:95–117

    Article  Google Scholar 

  • Dragicevic A, Lobianco A, Leblois A (2016) Forest planning and productivity-risk trade-off through the Markowitz mean-variance model. For Policy Econ 64:25–34

    Article  Google Scholar 

  • Edwards SF, Link JS, Rountree BP (2004) Portfolio management of wild fish stocks. Ecol Econ 49:317–329

    Article  Google Scholar 

  • Fama EF, French KR (1993) Common risk factors in the returns on stocks and bonds. J Financ Econ 33:3–56

    Article  Google Scholar 

  • Franklin JF, Norris LA, Berg DR, Smith GA (1999) The history of DEMO: an experiment in regeneration harvest of Northwestern forest ecosystems. Northwest Sci 73:3–11

    Google Scholar 

  • Gayer K (1886) Der gemischte Wald. Parey, Berlin

    Google Scholar 

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28:1–38

    Article  Google Scholar 

  • Griess VC, Knoke T (2011) Growth performance, wind-throw, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1159

    Article  Google Scholar 

  • Griess VC, Knoke T (2013) Bioeconomic modelling of mixed Norway spruce – European beech stands: economic consequences of considering ecological effects. Eur J For Res 132:511–522

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Hahn WA, Härtl F, Irland LC, Kohler C, Moshammer R, Knoke T (2014) Financially optimized management planning under risk aversion results in even-flow sustained timber yield. For Policy Econ 42:30–41

    Article  Google Scholar 

  • Halpern CB, Evans SA, Nelson CR, McKenzie D, Liguori DA (1999) Response of forest vegetation to varying levels and patterns of green-tree retention: an overview of a long-term experiment. Northwest Sci 73:27–44

    Google Scholar 

  • Halpern BS, White C, Lester SE, Costello C, Gaines SD (2011) Using portfolio theory to assess tradeoffs between return from natural capital and social equity across space. Biol Conserv 144:1499–1507

    Article  Google Scholar 

  • Hanewinkel M (2004) Spatial patterns in mixed coniferous even-aged, uneven-aged and conversion stands. Eur J For Res 123:139–155

    Google Scholar 

  • Havlik P, Enjolras G, Boisson J-M, Jacquet F, Lherm M, Veysset P (2008) Environmental good production in the optimum activities portfolio of a risk-averse farmer. Rev Agric Environ Stud 86:9–33

    Google Scholar 

  • Hildebrandt P, Knoke T (2009) Optimizing the shares of native tree species in forest plantations with biased financial parameters. Ecol Econ 68:2825–2833

    Article  Google Scholar 

  • Hildebrandt P, Knoke T (2011) Investment decisions under uncertainty-a methodological review on forest science studies. For Policy Econ 13:1–15

    Article  Google Scholar 

  • Hildebrandt P, Kirchlechner P, Hahn A, Knoke T, Mujica HR (2010) Mixed species plantations in Southern Chile and the risk of timber price fluctuation. Eur J For Res 129:935–946

    Article  Google Scholar 

  • Hirshleifer J, Riley JG (2002) The analytics of uncertainty and information. University Press, Cambridge. 6th reprint, first published 1992

    Google Scholar 

  • Hyytiäinen K, Haight RG (2010) Evaluation of forest management systems under risk of wildfire. Eur J For Res 129:909–919

    Article  Google Scholar 

  • Hyytiäinen K, Penttinen M (2008) Applying portfolio optimisation to the harvesting decisions of non-industrial private forest owners. For Policy Econ 10:151–160

    Article  Google Scholar 

  • Jacobsen JB, Thorsen BJ (2003) A Danish example of optimal thinning strategies in mixed-species forest under changing growth conditions caused by climate change. For Ecol Manag 180:375–388

    Article  Google Scholar 

  • Jactel H, Brockerhoff E, Duelli P (2005) A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestation, and re-examination of responsible factors. In: Scherer-Lorenzen M et al (eds) Forest diversity and function: temperate and boreal systems. Springer, Berlin, pp 235–262

    Chapter  Google Scholar 

  • Kant S (1999) Sustainable management of uneven-aged private forests: a case study from Ontario, Canada. Ecol Econ 30:131–146

    Article  Google Scholar 

  • Kaplan HM (1985) Farmland as a portfolio investment. J Portf Manag 11:73–78

    Article  Google Scholar 

  • Knoke T (2008) Mixed forests and finance – methodological approaches. Ecol Econ 65:590–601

    Article  Google Scholar 

  • Knoke T (2012) The economics of continuous cover forestry. In: Pukkala T, von Gadow K (eds) Continuous cover forestry, Managing forest ecosystems, vol 23, pp 167–193. doi:10.1007/978-94-007-2202-6_5

    Chapter  Google Scholar 

  • Knoke T, Moog M (2005) Timber harvesting versus forest reserves – producer prices for open-use areas in German beech forests (Fagus sylvatica L.) Ecol Econ 52:97–110

    Article  Google Scholar 

  • Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech-Norway spruce stands in bioeconomic modelling. Ecol Model 210:487–498

    Article  Google Scholar 

  • Knoke T, Wurm J (2006) Mixed forests and a flexible harvest strategy: a problem for conventional risk analysis? Eur J For Res 125:303–315

    Article  Google Scholar 

  • Knoke T, Moog M, Plusczyk N (2001) On the effect of volatile stumpage prices on the economic attractiveness of a silvicultural transformation strategy. For Policy Econ 2:229–240

    Article  Google Scholar 

  • Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution to the discussion on natural diversity. For Ecol Manag 213:102–116

    Article  Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Knoke T, Calvas B, Aguirre N, Román-Cuesta RM, Günter S, Stimm B, Weber M, Mosandl R (2009) Can tropical farmers reconcile subsistence demands with forest conservation? Front Ecol Environ 7:548–554

    Article  Google Scholar 

  • Knoke T, Steinbeis OE, Bösch M, Román-Cuesta RM, Burkhardt T (2011) Cost-effective compensation to avoid carbon emissions from forest loss: an approach to consider price–quantity effects and risk-aversion. Ecol Econ 70:1139–1153

    Article  Google Scholar 

  • Knoke T, Roman Cuesta RM, Weber M, Haber W (2012a) How can climate policy benefit from comprehensive land-use concepts? Front Ecol Environ 10:438–445

    Article  Google Scholar 

  • Knoke T, Schneider T, Hahn A, Grieß V, Rößiger J (2012b) Forstbetriebsplanung als Entscheidungshilfe. Ulmer, Stuttgart

    Google Scholar 

  • Knoke T, Paul C, Härtl F, Castro LM, Calvas B, Hildebrandt P (2015) Optimizing agricultural land-use portfolios with scarce data – a non-stochastic model. Ecol Econ 120:250–259

    Article  Google Scholar 

  • Koellner T, Schmitz OJ (2006) Biodiversity, ecosystem function, and investment risk. Bioscience 56:977–985

    Article  Google Scholar 

  • König A (1995) Sturmgefährdung von Beständen im Altersklassenwald: Ein Erklärungs- und Prognosemodell. Sauerländer’s, Frankfurt a.M.

    Google Scholar 

  • Kruschwitz L (2005) Investitionsrechnung. 10, überarbeitete und erweiterte Auflage. Oldenbourg, Munich

    Google Scholar 

  • Kuuluvainen T, Tahvonen O, Aakala T (2012) Even-aged and uneven-aged forest management in boreal fennoscandia: a review. Ambio 41:720–737

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SD, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xuet J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269

    Article  Google Scholar 

  • Lohmander P (1993) Economic two stage multi species management in a stochastic environment: the value of selective thinning options and stochastic growth parameters. Syst Anal Model Simul 11:287–302

    Google Scholar 

  • Lönnstedt L, Svensson J (2000) Return and risk in timberland and other investment alternatives for NIPF owners. Scand J For Res 15:661–669

    Article  Google Scholar 

  • Macmillan WD (1992) Risk and agricultural land use: a reformulation of the portfolio-theoretic approach to the analysis of a von Thünen economy. Geogr Anal 24:142–158

    Article  Google Scholar 

  • Mandelbrot BB, Hudson RL (2005) Fraktale und Finanzen: Märkte zwischen Risiko, Rendite und Ruin. Piper, München

    Google Scholar 

  • Marioni O, Adkins P, Hajkowicz S (2011) Water planning in a changing climate: joint applications of cost utility analysis and modern portfolio theory. Environ Model Softw 26:18–29

    Article  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  • Markowitz H (1990) Foundations of portfolio theory. http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1990/markowitz-lecture.pdf

  • Markowitz H (2010) Portfolio theory: as I still see it. Annu Rev Financ Econ 2:1–23

    Article  Google Scholar 

  • Markowitz H (2014) Mean–variance approximations to expected utility. Eur J Oper Res 234:346–355

    Article  Google Scholar 

  • Matthies BD, Kalliokoski T, Ekholm T, Hoen HF, Valsta LT (2015) Risk, reward, and payments for ecosystem services: a portfolio approach to ecosystem services and forestland investment. Ecosyst Serv 16:1–12

    Article  Google Scholar 

  • Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann For Sci 62:303–311

    Article  CAS  Google Scholar 

  • Mills WL, Hoover WL (1982) Investment in forest land: aspects of risk and diversification. Land Econ 58:33–51

    Article  Google Scholar 

  • Möhring B (2004) Betriebswirtschaftliche Analyse des Waldumbaus. Forst Holz 59:523–530

    Google Scholar 

  • Moog M, Knoke T (2003) Zur betriebswirtschaftlichen Bewertung von Einschränkungen der Waldbewirtschaftung. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch 122(1):59–77

    Article  Google Scholar 

  • Mosandl R, Knoke T (2002) Holzpreisschwankungen als Problem der Forstwirtschaft. Allg Forst Z Waldwirtsch Umweltvorsorge 57:118–119

    Google Scholar 

  • Neuner S, Beinhofer B, Knoke T (2013) The optimal tree species composition for a private forest enterprise – applying the theory of portfolio selection. Scand J For Res 28:38–48

    Article  Google Scholar 

  • Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn A, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Chang Biol 21:935–946

    Article  PubMed  Google Scholar 

  • Nordström E-M, Holmström H, Öhman K (2013) Evaluating continuous cover forestry based on the forest owner’s objectives by combining scenario analysis and multiple criteria decision analysis. Silva Fennica 47:1046. doi:10.14214/sf.1046

    Article  Google Scholar 

  • Pausch R (2005) Ein System-Ansatz zur Darstellung des Zusammenhangs zwischen Waldstruktur, Arbeitsvolumen und Kosten in naturnahen Wäldern Bayerns. Forstliche Forschungsberichte München 199

    Google Scholar 

  • Paydar Z, Qureshi ME (2012) Irrigation water management in uncertain conditions – application of modern portfolio theory. Agric Water Manag 115:47–54

    Article  Google Scholar 

  • Pearce D, Putz FE, Vanclay JK (2003) Sustainable forestry in the tropics: panacea or folly? For Ecol Manag 172:229–247

    Article  Google Scholar 

  • Pichón FJ (1996) The forest conversion process: a discussion of the sustainability of predominant land uses associated with frontier expansion in the Amazon. Agric Hum Values 13:32–51

    Article  Google Scholar 

  • Pindyck RS, Rubinfeld DL (2009) Mikroökonomie. Pearson Education, München

    Google Scholar 

  • Pommerening A, Murphy ST (2004) A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77:27–44

    Article  Google Scholar 

  • Puettmann KJ, Wilson SMG, Baker SC, Donoso PJ, Drössler L, Amente G, Harvey BD, Knoke T, Lu Y, Nocentini S, Putz FE, Yoshida T, Bauhus J (2015) Silvicultural alternatives to conventional even-aged forest management – what limits global adoption? For Ecosyst 2(8)

    Google Scholar 

  • Raes L, D’Haese M, Aguirre N, Knoke T (2016) A portfolio analysis of incentive programmes for conservation, restoration and timber plantations in Southern Ecuador. Land Use Policy 51:244–259

    Article  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208

    Article  PubMed  Google Scholar 

  • Rinehart J (2010) U.S. Timberland post-recession – is it the same asset? R&A Investment Forestry. www.investmentforestry.com

  • Ripken H, Spellmann H (1980) Modell-Berechnungen der Reinerträge der wichtigsten Baumarten sowie der gesamten Holzproduktion in den Niedersächsischen Landesforsten. Der Forst- und Holzwirt 35:153–165

    Google Scholar 

  • Roche MJ, McQuinn K (2004) Riskier product portfolios under decoupled payment. Eur Rev Agric Econ 31:111–123

    Article  Google Scholar 

  • Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. Forestry 84:527–537

    Article  Google Scholar 

  • Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T (2013) How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model 255:58–69

    Article  Google Scholar 

  • Röhrig E, Bartsch N, von Lüpke B (2006) Waldbau auf ökologischer Grundlage, 7. Auflage edn. Ulmer, Stuttgart

    Google Scholar 

  • Rothe A (2005) Tree species management and nitrate contamination of groundwater: a central Europe perspective. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Kluwer, Dordrecht, pp 71–83

    Chapter  Google Scholar 

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Samuelson PA (1969) Lifetime portfolio selection by dynamic stochastic programming. Rev Econ Stat 51:239–246

    Article  Google Scholar 

  • Schmid-Haas P, Bachofen H (1991) Die Sturmgefährdung von Einzelbäumen und Beständen. Schweizerische Zeitschrift für das Forstwesen 142:477–504

    Google Scholar 

  • Schou E (2012) Transformation to near-natural forest management, climate change and uncertainty. Department of Food and Resource Economics, University of Copenhagen

    Google Scholar 

  • Schütz J-P, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands and consequences for silviculture. Eur J For Res 125:291–302

    Article  Google Scholar 

  • Seifert T (2004) Einfluss der waldbaulichen Behandlung auf die Holzqualität von Fichte und Buche in Rein- und Mischbeständen. Report of the project X 33 – part II of the Bavarian Forest Service

    Google Scholar 

  • Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J Financ 14:425–442

    Google Scholar 

  • Sharpe WF (1966) Mutual fund performance. J Bus 39:119–138

    Article  Google Scholar 

  • Siiskonen H (2007) The conflict between traditional and scientific forest management in 20th century Finland. For Ecol Manag 249:125–133

    Article  Google Scholar 

  • Sonnemann D (2008) Das ideale Plentergleichgewicht – Leitbild oder Luxus? (The ideal equilibrium state in a selection forest – vision or luxury?) (Essay). Schweizerische Zeitschrift für das Forstwesen 159: 1–7

    Google Scholar 

  • Spellmann H (2005) Produziert der Waldbau am Markt vorbei? Allg Forstzeitschrift/Der Wald 60:454–459

    Google Scholar 

  • Tahvonen O, Pukkala T, Laiho O, Lähde E, Niinimäki S (2010) Optimal management of uneven-aged Norway spruce stands. For Ecol Manag 260:106–115

    Article  Google Scholar 

  • Thomson TA (1991) Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. For Sci 37:461–480

    Google Scholar 

  • Thorsen BJ (2010) Risk, returns and possible speculative bubbles in the price of Danish forest land? In: Helles F, Nielsen PS (eds) Scandinavian forest economics no. 43. Proceedings of the biennial meeting of the scandinavian society of forest economics Gilleleje, Denmark, May 2010

    Google Scholar 

  • von Thünen JH (1842) Der isolierte Staat in Beziehung auf Landwirtschaft und National-ökonomie, 2nd edn. Leopold, Rostock

    Google Scholar 

  • Wagner JE, Rideout DB (1991) Evaluating forest management investments: the capital asset pricing model and the income growth model. For Sci 37:1591–1604

    Google Scholar 

  • Wagner JE, Rideout DB (1992) The stability of the capital asset pricing model’s parameters in analysing forest investments. Can J For Res 22:1639–1645

    Article  Google Scholar 

  • Weber M-W (2002) Portefeuille- und Optionspreis-Theorie und forstliche Entscheidungen, Schriften zur Forstökonomie Band, vol 23. Sauerländer’s, Frankfurt a.M.

    Google Scholar 

  • Wikström P (2000) A solution method for uneven-aged management applied to Norway spruce. For Sci 46:452–463

    Google Scholar 

  • Wippermann C, Möhring B (2001) Exemplarische Anwendung der Portefeuilletheorie zur Analyse eines forstlichen Investments. Forst Holz 56:267–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knoke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Knoke, T. (2017). Economics of Mixed Forests. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_11

Download citation

Publish with us

Policies and ethics