Skip to main content
Log in

Determination of Total Column of Trichlorofluoromethane in the Atmosphere Considering the Effect of Amorphous Water Ice Precipitation on the Spectrometer Detector

  • Published:
Journal of Applied Spectroscopy Aims and scope

A ground-based spectroscopic method for determining the trichlorofluoromethane (CCl3F) content from measurements of IR spectra of solar radiation using an IFS-125HR Fourier spectrometer (FTIR method) is considered. A detector based on mercury–cadmium–tellurium (HgCdTe), which is used for measurements in the CCl3F absorption spectral region, was cooled by liquid N2. An amorphous ice film grew on the detector crystal as the vacuum in the metal Dewar flask gradually deteriorated during cooling. The spectral absorption band of amorphous ice at liquid N2 temperature overlapped the CCl3F absorption band. The variability of the ice film thickness added additional uncertainty to the estimates of the CCl3F atmospheric content. A technique has been developed to estimate the thickness of the ice film, to account for its spectral absorption in the algorithm for solving the inverse problem, and to eliminate this uncertainty. The technique was applied to measuring the atmospheric concentration of CCl3F in 2017–2019 over the NDACC St. Petersburg station. The results were compared with those obtained earlier using a technique in which the thickness of the ice film was treated as an unknown parameter adjusted during solution of the inverse problem. Previously obtained CCl3F atmospheric contents were refined using the proposed technique. The difference reached 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Molina and F. Rowland, Nature, 249, 810–812 (1974), https://doi.org/10.1038/249810a0.

    Article  ADS  Google Scholar 

  2. World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring, Geneva, Switzerland, Project–Report, No. 58 (2018), p. 588.

  3. S. A. Montzka, G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller, and J. W. Elkins, Nature, 557, 413–417 (2018), https://doi.org/10.1038/s41586-018-0106-2.

    Article  ADS  Google Scholar 

  4. P. F. Bernath, J. Steffen, J. Crouse, and C. D. Boone, J. Quant. Spectrosc. Radiat. Transfer, 253, 107178 (2020), https://doi.org/10.1016/j.jqsrt.2020.107178.

  5. M. Ko, P. Newman, S. Reimann, S. Strahan, R. Plumb, R. Stolarski, J. Burkholder, W. Mellouki, A. Engel, and E. Atlas, SPARC Rep., No. 6, (2013), WCRP-15/2013.

  6. http://www.ndaccdemo.org/

  7. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, J. Mol. Spectrosc., 323, 2–14 (2016).

    Article  ADS  Google Scholar 

  8. A. Polyakov, A. Poberovsky, M. Makarova, Y. Virolainen, Y. Timofeyev, and A. Nikulina, Atmos. Meas. Tech., 14, 5349–5368 (2021), https://doi.org/10.5194/amt-14-5349-2021.

    Article  Google Scholar 

  9. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hopfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, J. Quant. Spectrosc. Radiat. Transfer, 87, No. 1, 25–52 (2004), doi: https://doi.org/10.1016/j.jqsrt.2003.12.008.

    Article  ADS  Google Scholar 

  10. M. Zhou, C. Vigouroux, B. Langerock, P. Wang, G. Dutton, C. Hermans, N. Kumps, J.-M. Metzger, G. Toon, and M. De Maziere, Atmos. Meas. Tech., 9, 5621–5636 (2016), https://doi.org/10.5194/amt-9-5621-2016.

    Article  Google Scholar 

  11. A. V. Polyakov, A. V. Poberovsky, Y. A. Virolainen, and M. V. Makarova, J. Appl. Spectrosc., 87, No. 1, 92–98 (2020), https://doi.org/10.1007/s10812-020-00968-6.

    Article  ADS  Google Scholar 

  12. E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado, and D. D. Tobin, Philos. Trans. R. Soc., A, 370, 1–37 (2012), https://doi.org/10.1098/rsta.2011.0295.

  13. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N.A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, Atmos. Meas. Tech., 10, 4521–4536 (2017), https://doi.org/10.5194/amt-10-4521-2017.

    Article  Google Scholar 

  14. D. M. Hudgins, S. A. Sandford, L. J. Allamandola, and A. G. G. M. Tielens, Astrophys. J., Suppl. Ser., 86, 713–870 (1993), doi: https://doi.org/10.1086/191796.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polyakov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 1, pp. 74–79, January–February, 2023. https://doi.org/10.47612/0514-7506-2023-90-1-74-79

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, A.V., Nikulina, A.L., Poberovsky, A.V. et al. Determination of Total Column of Trichlorofluoromethane in the Atmosphere Considering the Effect of Amorphous Water Ice Precipitation on the Spectrometer Detector. J Appl Spectrosc 90, 66–71 (2023). https://doi.org/10.1007/s10812-023-01504-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01504-y

Keywords

Navigation