Skip to main content

Advertisement

Log in

A Hydrogen Sensor Based on Pd/InP Structures

  • Published:
Journal of Applied Spectroscopy Aims and scope

Тhe development of a photoelectrical hydrogen sensor without sensor element heating is presented. For the sensitive element of the hydrogen sensor the Pd/n-InP (Schottkie diode) and Pd/oxide/InP (metal–insulator–semiconductor) structures were developed and investigations of the photovoltage and the photocurrent of the structures depending on the hydrogen concentration in the range 0.1–100 vol.% in a nitrogen–hydrogen gas mixture were carried out. It is shown that the photovoltage and photocurrent decay rate and the hydrogen concentration are exponentially related to each other. The laboratory samples of sensor for hydrogen determination in the range 100–30,000 ppm which are able to operate at room temperature with response rate of 1–2 s are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Tang, C. H. Leung, and P. T. Lai, in Alessio Innocenti (Ed.), Stoichiometry and Materials Science — When Numbers Matter, IntechOpen, London (2012), pp. 263–282.

    Google Scholar 

  2. B. Podlepetsky, M. Nikiforova, and A. Kovalenko, Sens. Actuat. B, 254, 1200–1205 (2018).

    Article  Google Scholar 

  3. P. Sun, Yu. Yu, J. Xu, Y. Sun, J. Ma, and G. Lu, Sens. Actuat. B, 160, No. 1, 244–250 (2011).

    Article  Google Scholar 

  4. Lu Chi, Micro-Fabricated Hydrogen Sensors Operating at Elevated Temperatures, University of Kentucky Dissertations Paper 767 (2009), pp. 40–134.

  5. H. Fukuoka, J. Jung, and M. Inoue, Energy Proc., 29, 283–290 (2012).

    Article  Google Scholar 

  6. T. Higuchi, S. Nakagomi, and Y. Kokubun, Sens. Actuat. B, 140, 79–85 (2009).

    Article  Google Scholar 

  7. K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, Sens. Actuat. B, 145, 232–238 (2010).

    Article  Google Scholar 

  8. https://www.nemoto.co.jp/images/sites/3/2015/12/NCP170S1.pdf.

  9. https://euro-gasman.com/media/wsiwyg/GasSensors/SOLIDSENSE.

  10. http://www.gassensor.ru/data/files/hydrogen/TGS821.pdf.

  11. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, Jpn. J. Appl. Phys., 40, No. 11, 6254–6259 (2001).

    Article  ADS  Google Scholar 

  12. Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, IEEE Electron. Device Lett., 26, No. 2, 62–65 (2005).

    Article  ADS  Google Scholar 

  13. Kh. M. Salikhov, S. V. Slobodchikov, and B. V. Russu, Proc. SPIE, 3122, 474–482 (2011).

    Article  Google Scholar 

  14. V. N. Gaman, B. I. Balyuva, V. Yu. Gritsyk, T. A. Davydova, and V. M. Kalygina, Fiz. Tekh. Poluprovodn., 42, No. 2, 341–345 (2008).

    Google Scholar 

  15. S. V. Tikhov, E. L. Shobolov, V. V. Podol'skii, and S. B. Levichev, Zh. Tekh. Fiz., 73, No. 2, 87–92 (2003).

    Google Scholar 

  16. A. S. Mokrushin, R. V. Radchenko, and V. V. Tyul'na, Hydrogen Power [in Russian], Urals State University, Yekaterinburg (2014).

    Google Scholar 

  17. E. C. Walter, F. Favier, and R. M. Penner, Anal. Chem., 74, No. 7, 1546–1553 (2002).

    Article  Google Scholar 

  18. K. Okuyama, N. Takinami, Y. Chiba, S. Ohshima, and S. Kambe, J. Appl. Phys., 76, 231–235 (1994).

    Article  ADS  Google Scholar 

  19. V. A. Shutaev, E. A. Grebenshchikova, A. A. Pivovarova, V. G. Sidorov, L. K. Vlasov, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn., 53, No. 10, 1427–1430 (2019).

    Google Scholar 

  20. V. A. Shutaev, E. A. Grebenshchikova, V. G. Sidorov, and Yu. P. Yakovlev, Opt. Spektrosk., 128, No. 5, 603–606 (2020).

    Article  ADS  Google Scholar 

  21. V. A. Shutaev, E. A. Grebenshchikova, V. G. Sidorov, M. E. Kompan, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn., 54, No. 6, 547–551 (2020).

    Google Scholar 

  22. V. A. Shutaev, E. A. Grebenshchikova, V. G. Sidorov, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn., 55, No. 55, No. 12, 1236–1239 (2021).

  23. E. A. Grebenshchikova, V. G. Sidorov, V. A. Shutaev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn., 53, No. 2, 246–248 (2019).

    Google Scholar 

  24. E. A. Grebenshchikova, Kh. M. Salikhov, V. G. Sidorov, V. A. Shutaev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn., 52, No. 10, 1183–1186 (2018).

    Google Scholar 

  25. V. A. Shutaev, Creation and Study of a Hydrogen Sensor Based on a Pd/oxide/InP Diode Structure, Physics and Mathematical Sciences Candidate's Dissertation [in Russian], Ioffe Physical Technical Institute, St. Petersburg (2020), pp. 92–94.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shutaev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 5, pp.714–718, September–October, 2022. https://doi.org/10.47612/051475062022895714718.

Reported at the First International Conference on Lasers, Semiconductor Emitters and Derived Systems, May 23–27, 2022, Minsk, Belarus.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutaev, V.A., Grebenshchikova, E.A., Sidorov, V.G. et al. A Hydrogen Sensor Based on Pd/InP Structures. J Appl Spectrosc 89, 918–922 (2022). https://doi.org/10.1007/s10812-022-01448-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01448-9

Keywords

Navigation