Skip to main content
Log in

Estimating Joint Cartilage Thickness on an Animal Model ex vivo Using Diffuse Reflectance Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

A diffuse reflectance visible light spectroscopy method has been developed to estimate bovine cartilage thickness in real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe including two 400-μm diameter fibers with a center-to-center separation of 1.2 mm used to acquire the spectra. A total of four patellae were obtained from bovine just after sacrifice. In the study, ten cattle patella cartilage samples were prepared in a cylindrical shape and thinned by a 200-μm step. Spectra were acquired from the 123 cartilage samples. Cartilage samples were divided into training and validation groups. A correlation between the thickness of the cartilage samples and the absorption spectra was obtained using the data of the training group. The relative thickness of the cartilage was estimated with an average error of 15% in the validation group using the correlation. Diffuse reflectance spectroscopy has the potential to estimate the thickness of cartilage lesions during arthroscopic evaluation of knee cartilages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Cohen, R. J. Foster, and V. C. Mow, J. Orthop. Sport Phys., 28, No. 4, 203–215 (1998).

    Article  Google Scholar 

  2. R. E. Outerbridge, J. Bone Joint Surg., B, 43, No. 4, 752–757 (1961).

    Article  Google Scholar 

  3. G. Spahn, H. M. Klinger, M. Baums, U. Pinkepank, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 131, No. 3, 377–381 (2011).

    Article  Google Scholar 

  4. G. Spahn, H. M. Klinger, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 129, No. 8, 1117–1121 (2009).

    Article  Google Scholar 

  5. A. Sircan-Kucuksayan, M. Uyuklu, and M. Canpolat, Physiol. Meas., 36, No. 12, 2461–2469 (2015).

    Article  Google Scholar 

  6. M. Turhan, N. Yaprak, A. Sircan-Kucuksayan, I. Ozbudak, A. Bostanci, and A. Derin, Laryngoscope, 127, No. 3, 611–615 (2017).

    Article  Google Scholar 

  7. A. Sircan-Kucuksayan, T. Denkceken, and M. Canpolat, J. Biomed. Opt., 20, 115007 (2015).

    Article  ADS  Google Scholar 

  8. G. Spaln, H. Plettenberg, H. Nagel, E. Kahl, H. M. Klinger, and T. Muckley, Med. Eng. Phys., 30, No. 3, 285–292 (2008).

    Article  Google Scholar 

  9. D. Baykal, O. Irrechukwu, P. C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko, Appl. Spectrosc., 64, No. 10, 1160–1166 (2010).

    Article  ADS  Google Scholar 

  10. I. Afara, I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede, Osteoarthr. Cartilage, 20, No. 11, 1367–1373 (2012).

    Article  Google Scholar 

  11. D. K. Kasaragod, Z. H. Lu, J. Jacobs, and S. J. Matcher, Biomed. Opt. Express, 3, No. 3, 378–387 (2012).

    Article  Google Scholar 

  12. N. S. J. Lim, Z. Hamed, C. H. Yeow, C. Chan, and Z. Huang, J. Biomed. Opt., 16, 017003 (2011).

    Article  ADS  Google Scholar 

  13. G. Spahn, G. Felmet, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 133, No. 7, 997–1002 (2013).

    Article  Google Scholar 

  14. G. Spahn, H. Plettenberg, M. Hoffmann, H. T. Klemm, C. Brochhausen-Delius, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 137, No. 6, 837–844 (2017).

    Article  Google Scholar 

  15. G. O. Hofmann, J. Marticke, R. Grossstück, M. Hoffmann, M. Lange, and H. K. W. Plettenberg, Pathophysiology, 17, 1–8 (2010).

    Article  Google Scholar 

  16. P. A. Oberg, T. Sundqvist, and A. Johansson, Med. Biol. Eng. Comput., 42, No. 1, 3–8 (2004).

    Article  Google Scholar 

  17. M. Canpolat, T. Denkceken, C. Karagol, and A. T. Aydin, Proc. SPIE, 7890 (2011).

  18. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, Appl. Opt., 37, No. 16, 3586–3593 (1998).

    Article  ADS  Google Scholar 

  19. S. Koo, G. E. Gold, and T. P. Andriacchi, Osteoarthr. Cartilage, 13, No. 9, 782–789 (2005).

    Article  Google Scholar 

  20. F. Eckstein, A. Gavazzeni, H. Sittek, M. Haubner, A. Losch, and S. Milz, Magnet. Reson. Med., 36, No. 2, 256–265 (1996).

    Article  Google Scholar 

  21. D. Krpan and W. Kullich, Clin. Cases Miner. Bone Metab., 14, No. 2, 235–238 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Canpolat.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, pp. 569–574, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sircan-Kucuksayan, A., Canpolat, M. Estimating Joint Cartilage Thickness on an Animal Model ex vivo Using Diffuse Reflectance Spectroscopy. J Appl Spectrosc 86, 623–628 (2019). https://doi.org/10.1007/s10812-019-00869-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00869-3

Keywords

Navigation