Skip to main content
Log in

Development of a New 4-Amino-1,8-Naphthalimide Derivative as a Fluorescent Probe for Monitoring the Divalent Copper Ion

  • Published:
Journal of Applied Spectroscopy Aims and scope

This article presents the design and synthesis of a new variant of the 4-amino-1,8-naphthalimide fluorescent probe for monitoring the divalent copper ion, Cu2+. The probe BRST, functionalized with two propionic carboxylic acid groups in its receptor moiety, demonstrated high selectivity and sensitivity for the detection of Cu2+ in competitive media of various metal ions in DMSO/HEPES buffer solution (1:1; pH 7.4), with a fluorescence quenching of 75.41%. Besides its good linearity with Cu2+, the probe yielded commendable values of the association constant and the detection limit, 5.54 × 105 M–1 and 4.33 × 10–9 M, respectively. The quenching of the fluorescence intensity of the sensor in the presence of Cu2+ ions is attributable to the strong paramagnetic nature of the Cu2+ ion. The fluorescence "turn off" behavior of this simple and effective probe was successfully applied for the determination of Cu2+ levels in untreated water samples, with excellent recovery rates of 98–105.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kaur and S. Kumar, Tetrahedron, 67, 9233–9264 (2011).

    Article  Google Scholar 

  2. A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina, and J. Veciana, J. Am. Chem. Soc., 127, 15666–15667 (2005).

    Article  Google Scholar 

  3. V. B. Bojinov, N. I. Georgiev, and P. S. Nikolov, J. Photochem. Photobiol. A, 193, 129–138 (2008).

    Article  Google Scholar 

  4. W. K. Dong, S. F. Akogun, Y. Zhang, Y. X. Sun, and X. Y. Dong, Sensor. Actuat. B: Chem., 238, 723–734 (2017).

    Article  Google Scholar 

  5. J. H. Hu, Y. Sun, J. Qi, Q. Li, and T. B. Wei, Spectrochim. Acta A, 175, 125–133 (2017).

    Article  ADS  Google Scholar 

  6. F. Wang, Y. L. Xu, S. O. Aderinto, H. P. Peng, H. Zhang, and H. L. Wu, J. Photochem. Photobiol. A, 332, 273–282 (2017).

    Article  Google Scholar 

  7. W. K. Dong, X. L. Li, L. Wang, Y. Zhang, and Y. J. Ding, Sensor. Actuat. B: Chem., 229, 370–378 (2016).

    Article  Google Scholar 

  8. Y. L. Xu, S. S. Mao, H. P. Peng, F. Wang, H. Zhang, S. O. Aderinto, and H. L. Wu, J. Lumin., 192, 56–63 (2017).

    Article  Google Scholar 

  9. S. Thavornpradit, J. Sirirak, and N. Wanichacheva, J. Photochem. Photobiol. A, 330, 55–63 (2016).

    Article  Google Scholar 

  10. C. Barranguet, F. P. van den Ende, M. Rutgers, A. M. Breure, M. Greijdanus, J. J. Sinke, and W. Admiraal, Environ. Toxicol. Chem., 22, 1340–1349 (2003).

    Google Scholar 

  11. J. Liu and Y. Lu, J. Am. Chem. Soc., 129, 9838–9839 (2007).

    Article  Google Scholar 

  12. Y. Sun, J. H. Hu, J. Qi, and J. B. Li, Spectrochim. Acta A, 167, 101–105 (2016).

    Article  ADS  Google Scholar 

  13. R. Kramer, Angew. Chem. Int. Edit., 37, 772–773 (1998).

    Article  Google Scholar 

  14. G. L. Millhauser, Acc. Chem. Res., 37, 79–85 (2004).

    Article  Google Scholar 

  15. E. Gaggelli, H. Kozlowski, D. Valensin, and G. Valensin, Chem. Rev., 106, 1995–2044 (2006).

    Article  Google Scholar 

  16. W. Y. Lin, L. Yuan, W. Tan, J. B. Feng, and L. L. Long, Chem. Eur. J., 15, 1030–1035 (2009).

    Article  Google Scholar 

  17. R. Bergonzi, L. Fabbrizzi, M. Licchelli, and C. Mangano, Coord. Chem. Rev., 170, 31–46 (1998).

    Article  Google Scholar 

  18. Q. T. Meng, Y. Shi, C. P. Wang, H. M. Jia, X. Gao, R. Zhang, Y. F. Wang, and Z. Q. Zhang, Org. Biomol. Chem., 13, 2918–2926 (2015).

    Article  Google Scholar 

  19. R. Zhang, X. J. Yu, Y. J. Yin, Z. Q. Ye, G. L. Wang, and J. L. Yuan, Anal. Chim. Acta, 691, 83–88 (2011).

    Article  Google Scholar 

  20. M. H. Lim, B. A. Wong, W. H. Pitcock, Jr., D. Mokshagundam, M. H. Baik, and S. J. Lippard, J. Am. Chem. Soc., 128, 14364–14373 (2006).

    Article  Google Scholar 

  21. E. B. Veale and J. A. Kitchen, T. Gunnlaugsson, Supramol. Chem., 25, 101–108 (2013).

    Article  Google Scholar 

  22. Z. Xu, J. Yoon, and D. R. Spring, Chem. Commun., 46, 2563–2565 (2010).

    Article  Google Scholar 

  23. N. Singh, N. Kaur, B. McCaughan, and J. F. Callan, Tetrahedron Lett., 51, 3385–3387 (2010).

    Article  Google Scholar 

  24. J. Huang, Y. Xu, and X. Qian, Dalton Ttans., 1761–1766 (2009).

  25. H. L. Wu, S. O. Aderinto, Y. L. Xu, H. Zhang, and X. Y. Fan, J. Appl. Spectrosc., 84, 25–30 (2017).

    Article  ADS  Google Scholar 

  26. E. L. Que, D. W. Domaille, and C. J. Chang, Chem. Rev., 108, 1517–1549 (2008).

    Article  Google Scholar 

  27. Y. L. Xu, S. O. Aderinto, H. L. Wu, H. P. Peng, H. Zhang, J. W. Zhang, and X. Y. Fan, Z. Naturforsch. B, 72, 35–41 (2017).

    Article  Google Scholar 

  28. S. O. Aderinto, Y. L. Xu, H. P. Peng, F. Wang, H. L. Wu, and X. Y. Fan, J. Fluoresc., 27, 79–87 (2017).

    Article  Google Scholar 

  29. Y. Gao, Y. Li, X. Yang, F. He, J. Huang, M. Jiang, Z. Zhou, and H. Chen, RSC Adv., 5, 80110–80117 (2015).

    Article  Google Scholar 

  30. Y. Zhang, X. Guo, X. Tian, A. Liu, and L. Jia, Sensor. Actuat. B: Chem., 218, 37–41 (2015).

    Article  Google Scholar 

  31. H. L. Wu, H. P. Peng, F. Wang, H. Zhang, C. G. Chen, J. W. Zhang, and Z. H. Yang, J. Appl. Spectrosc., 83, 931–937 (2017).

    Article  ADS  Google Scholar 

  32. J. Wang, Y. Xiao, Z. Zhang, X. Qian, Y. Yang, and Q. Xu, J. Mater. Chem., 15, 2836–2839 (2005).

    Article  Google Scholar 

  33. S. O. Aderinto, H. Zhang, H. L. Wu, C. Y. Chen, J. W. Zhang, H. P. Peng, Z. H. Yang, and F. Wang, Color. Technol., 133, 40–49 (2017).

    Article  Google Scholar 

  34. H. L. Wu, C. Y. Chen, H. Zhang, H. P. Peng, F. Wang, Z. H. Yang, and J. W. Zhang, Chem. Pap., 70, 685–694 (2016).

    Article  Google Scholar 

  35. N. I. Georgiev, V. B. Bojinov, and N. Marinova, Sensor. Actuat. B: Chem., 150, 655–666 (2010).

    Article  Google Scholar 

  36. D. Staneva, I. Grabchev, J.-P. Soumillion, and V. Bojinov, J. Photochem. Photobiol. A, 189, 192–197 (2007).

    Article  Google Scholar 

  37. H. P. Peng, K. S. Shen, S. S. Mao, X. K. Shi, Y. L. Xu, S. O. Aderinto, and H. L. Wu, J. Fluoresc., 27, 1191–1200 (2017).

    Article  Google Scholar 

  38. H. L. Wu, C. P. Wang, J. W. Zhang, Y. H. Zhang, C. Y. Chen, Z. H. Yang, and X. Y. Fan, Z. Naturforsch. B, 70, 863–869 (2015).

    Article  Google Scholar 

  39. X. Poteau, A. I. Brown, R. G. Brown, C. Holmes, and D. Matthew, Dyes Pigments, 47, 91–105 (2000).

    Article  Google Scholar 

  40. X. Sun, G. Kim, Y. Xu, J. Yoon, and T. D. James, Chem. Plus Chem., 81, 30–34 (2016).

    Google Scholar 

  41. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1999).

    Book  Google Scholar 

  42. O. Stern and M. Volmer, Z. Phys., 20, 183 (1919).

    Google Scholar 

  43. P. Job, Ann. Chim. Appl., 9, 113–203 (1928).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilu Wu.

Additional information

Publsihed in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, pp. 612–619, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Mao, S., Shi, X. et al. Development of a New 4-Amino-1,8-Naphthalimide Derivative as a Fluorescent Probe for Monitoring the Divalent Copper Ion. J Appl Spectrosc 85, 665–672 (2018). https://doi.org/10.1007/s10812-018-0702-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0702-9

Keywords

Navigation