Skip to main content
Log in

A Facile Acidic Digestion Method for Cosmetic Lead and Cadmium Determination by an Inductively Coupled Plasma Atomic Emission Spectrometer

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method for determining lead (Pb) and cadmium (Cd) in cosmetic products by an inductively coupled plasma atomic emission spectrometer (ICP-AES) is described. The acid digestion approach using concentrated HNO3, HNO3–HClO4, and aqua regia is performed, and the results show that the digestion of HNO3 is the most suitable procedure for cosmetics. The proposed method is then validated and optimized for Pb and Cd determination in terms of accuracy, repeatability, and day-to-day reproducibility. For diluted cosmetic samples, the limits of detection for Pb and Cd are 0.07 and 0.001 μg/g, respectively. This developed method is then successfully applied to the analysis of different facial cosmetic products, showing the contents of Pb and Cd within the ranges ~(0.11–0.54) and ~(0.01–0.24) mg/kg, respectively. The determination recoveries for Pb and Cd are within 89.7–104.4%, and the relative standard deviations are less than 3.0% (n = 5), showing the good applicability of this proposed method for Pb and Cd quantification in cosmetic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Hepp, W. R. Mindak, J. W. Gasper, C. B. Thompson, and J. N. Barrows, J. Cosm. Sci., 65, 125–145 (2014).

    Google Scholar 

  2. B. Safford, A. M. Api, C. Barratt, D. Comiskey, E. J. Daly, G. Ellis, C. McNamara, C. O'Mahony, S. Robison, B. Smith, R. Thomas, and S. Tozer, Regul. Toxicol. Pharmacol., 72, 673–682 (2015).

    Article  Google Scholar 

  3. T. Hisaki, M. Aiba Née Kaneko, M. Yamaguchi, H. Sasa, and H. Kouzuki, J. Toxicol Sci., 40, 163–180 (2015).

    Article  Google Scholar 

  4. J. G. Ayenimo, A. M. Yusuf, A. S. Adekunle, and O. W. Makinde, Bull. Environ. Contam. Toxicol., 84, 8–14 (2010).

    Article  Google Scholar 

  5. R. Siti Zulaikha, S. N. Syed Ismail, and S. M. Praveena, Public Health Res., 5, 7–15 (2015).

    Google Scholar 

  6. E. L. Sainio, R. Jolanki, E. Hakala, and L. Kanerva, Contact Dermatitis, 42, 5–10 (2000).

    Article  Google Scholar 

  7. P. Ziarati, S. Moghimi, S. Arbabi-Bidgoli, and M. Ghomi, Int. J. Chem. Eng. Appl., 3, 450–452 (2012).

    Google Scholar 

  8. S. Borowska and M. M. Brzóska, J. Appl. Toxicol., 35, No. 6, 551–572 (2015); doi: https://doi.org/10.1002/jat.3129.

    Article  Google Scholar 

  9. R. C. Patra, A. K. Rautray, and D. Swarup, Vet. Med. Int., 2011, 1–9 (2011); doi: https://doi.org/10.4061/2011/457327.

    Article  Google Scholar 

  10. V. Matović, A. Buha, Z. Bulat, and D. Dukić-Ćosić, Arh. Hig. Rada. Toksikol., 62, 65–76 (2011).

    Article  Google Scholar 

  11. International Agency for Research on Cancer. In: Guidelines for Drinking Water Quality, 1, Recommendations, World Health Organization, Geneva (2004).

  12. Council Directive of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products (76/768/EEC), Off. J. Eur. Commun., 169 (1976).

  13. I. Al-Saleh, S. Al-Enazi, and N. Shinwari, Regul. Toxicol. Pharmacol., 54, 105–113 (2009).

    Article  Google Scholar 

  14. M. D. Esteban-Vasallo, N. Aragonés, M. Pollan, G. López-Abente, and B. Perez-Gomez, Environ. Health Perspect., 120, 1369–1377 (2012).

    Article  Google Scholar 

  15. N. R. Cha, J. K. Lee, Y. R. Lee, H. J. Jeong, and S. Y. Lee, Anal. Lett., 43, 259–268 (2010).

    Article  Google Scholar 

  16. R. Lemaire, D. D. Bianco, L. Garnier, and J. L. Beltramo, Anal. Lett., 46, 2265–2278 (2013).

    Article  Google Scholar 

  17. A. Khalid, I. H. Bukhari, M. Riaz, G. Rehman, Q. U. Ain, T. H. Bokhari, N. Rasool, M. Zubair, and S. Munir, Int. J. Biol. Pharm. Allied Sci., 2, 1003–1009 (2013).

    Google Scholar 

  18. H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, Int. J. Cosm. Sci., 35, 176–182 (2013).

    Article  Google Scholar 

  19. Y. E. Unsal, M. Soylak, M. Tuzen, and B. Hazer, Anal. Lett., 48, 1163–1179 (2015).

    Article  Google Scholar 

  20. A. Sani, M. B. Gaya, and F. A. Abubakar, Toxicol. Rep., 3C, 866–869 (2016).

    Article  Google Scholar 

  21. K. Sharafi, N. Fattahi, M. Pirsaheb, H. Yarmohamadi, and D. M. Fazlzadeh, Int. J. Cosm. Sci., 37, 489–495 (2015).

    Article  Google Scholar 

  22. A. R. Soares and C. C. Nascentes, Talanta, 105, 272–277 (2013).

    Article  Google Scholar 

  23. A. I. Barros, T. V. Silva, E. C. Ferreira, and J. A. G. Neto, J. Braz. Chem. Soc., 26, 140–146 (2015).

    Google Scholar 

  24. W. N. Chen, S. J. Jiang, Y. L. Chen, and A. C. Sahayam, Anal. Chim. Acta, 860, 8–14 (2015).

    Article  Google Scholar 

  25. N. M. Hepp, J. AOAC Int., 98, 160–164 (2015).

    Article  Google Scholar 

  26. M. G. Volpe, M. Nazzaro, R. Coppola, F. Rapuano, and R. P. Aquino, Microchem. J., 101, 65–69 (2012).

    Article  Google Scholar 

  27. S. Y. I. Issa and R. A. Maguid, J. Environ. Anal. Toxicol., 6, 1061–1066 (2016); doi: https://doi.org/10.4172/2161-0525.1000376.

    Article  Google Scholar 

  28. S. H. Kim, Y. Lim, E. Hwang, and Y. H. Yim, Anal. Methods, 8, 796–804 (2016).

    Article  Google Scholar 

  29. N. H. Bings, J. O. O. V. Niessen, and J. N. Schaper, Spectrochim. Acta B: At. Spectrosc., 100, 14–37 (2014).

    Article  ADS  Google Scholar 

  30. I. J. Cindrić, M. Zeiner, M. Kröppl, and G. Stingeder, Microchem. J., 99, 364–369 (2011).

    Article  Google Scholar 

  31. I. J. Cindrić, I. Krizman, M. Zeiner, Š. Kampić, G. Medunić, and G. Stingeder, Food Chem., 135, 2675–2680 (2012).

    Article  Google Scholar 

  32. A. R. Tsygankova, O. V. Lundovskaya, and A. I. Saprykin, J. Anal. Chem., 71, 179–184 (2016).

    Article  Google Scholar 

  33. Y. A. Naumova, N. V. Sapozhnikova, O. N. Egorova, and A. A. Lumpov, J. Anal. Chem., 70, 468–476 (2015).

    Article  Google Scholar 

  34. V. I. Titov, N. V. Goundobin, and V. N. Kotikov, J. Appl. Spectrosc., 80, 477–481 (2013).

    Article  ADS  Google Scholar 

  35. R. I. Botto, Spectrochim. Acta Rev., 14, 141–150 (1991).

    Google Scholar 

  36. A. A. Alqadami, M. A. Abdalla, Z. A. Alothman, and K. Omer, Int. J. Environ. Res. Public Health, 10, 361–374 (2013).

    Article  Google Scholar 

  37. Q. Dai, X. N. Lin, Y. Y. Wu, S. M. Lou, and J. X. Chen, Chin. J. Anal. Lab., 31, 54–58 (2012).

    Google Scholar 

  38. R. Mayildurai, A. Ramasubbu, and N. Velmani, J. Pharm. Res., 9, 27–30 (2015).

    Google Scholar 

  39. C. Capelli, D. Foppiano, G. Venturelli, E. Carlini, E. Magi, and C. Ianni, Anal. Lett., 47, 1201–1209 (2014).

    Article  Google Scholar 

  40. K. Wiangnon and R. Cramer, Anal. Chem., 87, 1485–1488 (2015).

    Article  Google Scholar 

  41. A. Agazzi and C. Pirola, Microchem. J., 67, 337–341 (2000).

    Article  Google Scholar 

  42. I. O. Akinyele and O. S. Shokunbi, Food Chem., 173, 682–684 (2015).

    Article  Google Scholar 

  43. A. Enders and J. Lehmann, Commun. Soil Sci. Plant Anal., 43, 1042–1052 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijuan Tan.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, pp. 606–611, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Wang, Z. & Wang, Z. A Facile Acidic Digestion Method for Cosmetic Lead and Cadmium Determination by an Inductively Coupled Plasma Atomic Emission Spectrometer. J Appl Spectrosc 85, 659–664 (2018). https://doi.org/10.1007/s10812-018-0701-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0701-x

Keywords

Navigation