Skip to main content
Log in

Determination of Ruthenium in Heat-Resistant Nickel Alloys by Atomic Emission Spectrometry with Inductively Coupled Plasma

  • Published:
Journal of Applied Spectroscopy Aims and scope

A technique for measuring 0.5–6.5 mass% ruthenium in heat-resistant nickel alloys using atomic emission spectrometry with inductively coupled plasma was developed. The measurement precision (repeatability and reproducibility) was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Kablov (Ed.), Cast Blades of Gas-Turbine Engines: Alloys, Technology, Coatings [in Russian], 2nd Ed., Nauka, Moscow (2006).

    Google Scholar 

  2. O. G. Ospennikova, (E. N. Kablov Ed.), Aviation Materials and Technologies: Jubilee Scientific-Technical Collection (Supplement to the Journal Aviation Materials and Technologies [in Russian]), VIAM, Moscow (2012), p. 19.

    Google Scholar 

  3. E. N. Kablov, Yu. A. Bondarenko, A. B. Echin, and V. A. Surova, Aviation Materials and Technologies, No. 1 (2012), art. 1.

  4. R. Dorolia, D. F. Lahrman, and D. R. Field, Superalloys, 1988, 255–264 (1988).

    Google Scholar 

  5. K. S. O’Hara, W. S. Walston, E. W. Ross, and R. Darolia, Nickel Base Superalloy and Article, U.S. Pat. No. 5, 482,789; Jan. 9, 1996.

  6. P. Caron, Superalloys, 2000, 737–746 (2000).

    Google Scholar 

  7. H. Marakami, T. Honma, Y. Koizumi, and H. Harado, Superalloys, 2000, 747–756 (2000).

    Google Scholar 

  8. Q. Feng, T. K. Nandy, S. Tin, and T. M. Pollock, Acta Mater., 51, No. 1, 269–284 (2003).

    Article  Google Scholar 

  9. D. Argence, C. Vernault, Y. Desvallees, and D. Fournier, Superalloys, 2000, 829–837 (2000).

    Google Scholar 

  10. S. Walston, A. Cetel, R. MacKay, K. O’Hara, D. Duhl, and R. Dreshfield, Superalloys, 2004, 15–24 (2004).

    Google Scholar 

  11. Y. Koizumi, T. Kobayashi, T. Yokokawa, J. Zhang, M. Osawa, H. Harada, Y. Aoki, and M. Arai, Superalloys, 2004, 35–44 (2004).

    Google Scholar 

  12. K. E. Egizbaeva, in: Analysis and Technology of Noble Metals [in Russian], Metallurgiya, Moscow (1971), pp. 45–47.

    Google Scholar 

  13. GOST 12554.1-83, Platinum-Ruthenium Alloys. Technique for Ruthenium Determination [in Russian].

  14. GOST 12554.2-83, Platinum-Ruthenium Alloys. Technique for Spectral Analysis [in Russian].

  15. A. A. Pupyshev and D. A. Danilova, Atomic-Emission Spectral Analysis with Inductively Coupled Plasma and Grimm Glow Discharge [in Russian], GOU VPO UGTU-UPI, Ekaterinburg (2002).

    Google Scholar 

  16. Progress in Science and Technology. Series Analytical Chemistry, 2, VINITI, Moscow (1990).

  17. M. Thompson and J. N. Walsh, Handbook of Inductively Coupled Plasma Spectrometry, Blackie, Glasgow (1983).

    Google Scholar 

  18. RMG 61–2003, Recommendations for Interstate Standardization, State System for Ensuring Uniform Measurement. Robustness, Accuracy, and Precision Indicators of Quantitative Chemical Analytical Techniques. Estimation Methods [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Titov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 4, pp. 489–493, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titov, V.I., Goundobin, N.V. & Kotikov, V.N. Determination of Ruthenium in Heat-Resistant Nickel Alloys by Atomic Emission Spectrometry with Inductively Coupled Plasma. J Appl Spectrosc 80, 477–481 (2013). https://doi.org/10.1007/s10812-013-9791-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9791-7

Keywords

Navigation