Skip to main content

Advertisement

Log in

Use of Fourier Transform IR Spectroscopy for the Study of Saliva Composition

  • Published:
Journal of Applied Spectroscopy Aims and scope

The IR spectrum of saliva may be divided into groups of absorption bands corresponding to lipids, proteins, nucleic acids, and sugars. The finding of thiocyanate ion absorption bands is a characteristic feature of the spectra of saliva. In comparing a typical IR spectrum of saliva with the spectra of albumin, glucose, and lysozyme, a similarity is noted at 1100–1040 cm–1 with the spectrum of albumin and at 1700–1400 cm–1 with the spectra of glucose and lysozyme. It was shown that sugars are found in saliva in a form bound with proteins. Correlations were found between band intensities in the IR spectrum of saliva and its biochemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhang, X. Sun, and X. Wang, Appl. Biochem. Biotechnol., 168, 1718–1727 (2012).

    Article  Google Scholar 

  2. E. V. Kochurova, Klinich. Lab. Diagnostika, 1, 13–16 (2014).

    Google Scholar 

  3. S. A. Khaustova, M. Yu. Shkurnikov, E. S. Grebenyuk, V. G. Artyushenko, and A. G. Tonevitskii, Byul. Éksper. Biol. Med., 148, No. 11, 597–600 (2009).

    Google Scholar 

  4. E. Papacosta and G. P. Nassis, J. Sci. Med. Sport, 14, 424–434 (2011).

    Article  Google Scholar 

  5. S. Chiappin, G. Antonelli, R. E. F. Gatti, and E. F. De Palo, Clinic. Chim. Acta, 383, 30–40 (2007).

    Article  Google Scholar 

  6. S. Bandhakavi, M. D. Stone, G. Onsongo, S. K. Van Riper, and T. J. Griffin, J. Proteome Res., 8, 5590–5600 (2009).

    Article  Google Scholar 

  7. J. A. Loo, W. Yan, P. Ramachandran, and D. T. Wong, J. Dent. Res., 89, 1016–1023 (2010).

    Article  Google Scholar 

  8. Y. Goswami, R. Mishra, A. P. Agrawal, and L. A. Agrawal, IOSR J. Dental Med. Sci., 14, No. 3, 80–87 (2015).

    Google Scholar 

  9. G. M. Zubareva, V. M. Mikin, G. E. Bordina, I. A. Belyaeva, N. P. Lopina, S. M. Zubarev, and A. V. Kargapolov, Stomatologiya, 5, 7–10 (2009).

    Google Scholar 

  10. P. Seredin, D. Goloschapov, V. Kashkarov, Y. Ippolitov, and K. Bamberry, Results in Physics, 6, 35–321 (2016).

    Google Scholar 

  11. O. G. Ildiz, H. Arslan, O. Unsalan, C. Araujo-Andrade, E. Kurt, H. T. Karatepe, A. Yilmaz, O. B. Yalcinkaya, and H. Herken, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 152, 551–556 (2015).

    Article  Google Scholar 

  12. F. Zapata, M. A. F. de La Ossa, and C. García-Ruiz, TrAC Trends Anal. Chem., 64, 53–63 (2015).

    Article  Google Scholar 

  13. A. S. Gordetsov, Sovr. Tekhnol. Meditsine, 1, 84–98 (2010).

    Google Scholar 

  14. C. M. Orphanou, Forens. Sci. Int., 252, 10–16 (2015).

    Article  Google Scholar 

  15. I. Gregório, F. Zapata, and C. García-Ruiz, Talanta, 162, 634–640 (2017).

    Article  Google Scholar 

  16. A. L. Mitchell, K. B. Gajjar, G. Theophilou, F. L. Martin, and P. L. MartinHirsch, J. Biophoton., 7, 153–165 (2014).

    Article  Google Scholar 

  17. L. Sitole, F. Steffens, T. P. J. Krüger, and D. Meyer, J. Integr. Biol., 18, 513–523 (2014), doi: https://doi.org/10.1089/omi.2013.0157.

    Google Scholar 

  18. A. S. Peters, J. Backhaus, A. Pfützner, M. Raster, G. Burgard, S. Demirel, D. Böckler, and M. Hakimi, Vibr. Spectrosc., 92, 20–26 (2017).

    Article  Google Scholar 

  19. M. Khanmohammadi, K. Ghasemi, A. B. Garmarudi, and M. Ramin, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 136, 1782–1785 (2015).

    Article  ADS  Google Scholar 

  20. F. Elmi, A. F. Movaghar, M. M. Elmi, H. Alinezhad, and N. Nikbakhsh, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 187, 87–91 (2017).

    Article  ADS  Google Scholar 

  21. X. Wang, X. Shen, D. Sheng, X. Chen, and X. Liu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 122, 193–197 (2014).

    Article  ADS  Google Scholar 

  22. E. Giorgini, P. Balercia, C. Conti, P. Ferraris, S. Sabbatini, C. Rubini, and G. Tosi, J. Mol. Struct., 1051, 226–232 (2013).

    Article  ADS  Google Scholar 

  23. H. K. Yip and W. M. To, Dental Mater., 21, 695–703 (2005).

    Article  Google Scholar 

  24. S. Khaustova, M. Shkurnikov, E. Tonevitsky, V. Artyushenko, and A. Tonevitsky, Analyst, 135, 3183–3192 (2010); DOI: https://doi.org/10.1039/c0an00529k.

    Article  ADS  Google Scholar 

  25. D. Perez-Guaita, J. Ventura-Gayete, C. Pérez-Rambla, M. Sancho-Andreu, S. Garrigues, and M. de la Guardia, Anal. Bioanal. Chem., 404, No. 3, 649–656 (2012).

    Article  Google Scholar 

  26. S. A. Khaustova, M. U. Shkurnikov, E. S. Grebenyuk, V. G. Artyushenko, and A. G. Tonevitsky, Bull. Exper. Biol. Med., 148, No. 5, 841–844 (2009).

    Article  Google Scholar 

  27. L. M. Rodrigues, T. D. Magrini, C. F. Lima, J. Scholz, H. da Silva Martinho, and J. D. Almeida, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 174, 124–129 (2017).

    Article  ADS  Google Scholar 

  28. D. A. Scott, D. E. Renaud, S. Krishnasamy, P. Meriç, N. Buduneli, S. Cetinkalp, and K. Liu, Diabetol. Metab. Syndr., 2, 1–9 (2010); DOI: https://doi.org/10.1186/17585996248.

    Article  Google Scholar 

  29. C. P. Schultz, M. K. Ahmed, C. Dawes, and H. H. Mantsch, Anal. Biochem., 240, 7–12 (1996); doi: https://doi.org/10.1006/abio.1996.0323.

    Article  Google Scholar 

  30. K. Tsuge, M. Kataoka, and Y. Seto, J. Heal. Sci., 46, 343–350 (2000).

    Article  Google Scholar 

  31. P. Garidel and H. Schott, Bioproc. Int., 1, 48–55 (2006).

    Google Scholar 

  32. P. C. Caetano Júnior, J. Ferreira-Strixino, and L. Raniero, Res. Biomed. Eng., 31, 116–124 (2015).

    Article  Google Scholar 

  33. S. Yoshida and H. Yoshida, Biopolym., 74, 403–412 (2004); DOi: https://doi.org/10.1002/bip.20072.

    Article  Google Scholar 

  34. Z. Movasaghi, S. Rehman, and I. Rehman, Appl. Spectrosc. Rev., 43, 134–179 (2008).

    Article  ADS  Google Scholar 

  35. R. R. Sultana, S. N. Zafarullah, and N. H. Kirubamani, Ind. J. Sci. Technol., 4, 967–970 (2011).

    Google Scholar 

  36. J. L. Arrondo and F. M. Goñi, Chem. Phys. Lipids, 96, 53–68 (1998).

    Article  Google Scholar 

  37. K. M. Elkins, J. Forensic Sci., 56, 1580–1587 (2011).

    Article  Google Scholar 

  38. Z. Ren, L. D. Do, G. Bechkoff, S. Mebarek, N. Keloglu, S. Ahamada, S. Meena, D. Magne, S. Pikula, Y. Wu, and R. Buchet, PLoS One, 10, e0120087 (2015); https://doi.org/10.1371/journal.pone.0120087.

    Article  Google Scholar 

  39. N. Hassler, D. Baurecht, G. Reiter, and U. P. Fringeli, J. Phys. Chem., 115, 1064–1072 (2011); DOI: https://doi.org/10.1021/jp105870z.

    Google Scholar 

  40. M. M. Diaz, O. L. Bocanegra, R. R. Teixeira, S. S. Soares, and F. S. Espindola, Int. J. Sport Med., 34, No. 1, 8–13 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Bel’skaya.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 3, pp. 436–442, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel’skaya, L.V., Sarf, E.A. & Makarova, N.A. Use of Fourier Transform IR Spectroscopy for the Study of Saliva Composition. J Appl Spectrosc 85, 445–451 (2018). https://doi.org/10.1007/s10812-018-0670-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0670-0

Keywords

Navigation