Skip to main content
Log in

Fast and Convenient NIR Spectroscopy Procedure for Determination of Metformin Hydrochloride in Tablets

  • Published:
Journal of Applied Spectroscopy Aims and scope

A rapid and convenient near-infrared (NIR) reflectance spectroscopic procedure for the determination of metformin hydrochloride in tablets is presented. Determination was based on calibration curves that were obtained using a range of standards containing different concentrations of metformin hydrochloride blended with polyvinylpyrrolidone. The raw spectra of the standards, neat PVP, metformin hydrochloride, and powdered tablets were processed using a Multiplicative Scatter Correction filter as well as by the derivative spectroscopy method to give a basis for the calibration curve construction. The results were validated by thin-layer chromatography followed by UV-densitometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Bailey and C. Day, Pract. Diabetes, 21, 115–117 (2004).

    Article  Google Scholar 

  2. R. A. Miller, Q. Chu, J. Xie, M. Foretz, B. Viollet, and M. J. Birnbaum, Nature, 494, 256–260 (2013).

    Article  ADS  Google Scholar 

  3. E. A. Werner and J. Bell, J. Chem. Soc. Trans., 121, 1790–1795 (1922).

    Article  Google Scholar 

  4. H. Al-Inany and N. Johnson, BMJ, 332, 1461–1462 (2006).

    Article  Google Scholar 

  5. L. Radosh, Am. Fam. Physician., 79, 671–676 (2009).

    Google Scholar 

  6. W. Nicholson, S. Bolen, C. Witkop, D. Neale, L. Wilson, and E. Bass, Obstet. Gynecol., 113, 193–205 (2009).

    Article  Google Scholar 

  7. P. Kitwitee, S. Limwattananon, C. Limwattananon, O. Waleekachonlert, T. Ratanachotpanich, M. Phim philai, T. V. Nguyen, and C. Pongchaiyakul, Diabetes Res. Clin. Pract., 109, 521–532 (2015).

  8. M. Malek, R. Aghili, Z. Emami, and M. Khamseh, ISRN Endocrinol. (2013) 636927; doi: https://doi.org/10.1155/2013/636927.

  9. I. Ben Sahra, Y. Le Marchand Brustel, J. F. Tanti, and F. Bost, Mol. Cancer Ther., 9, 1092–1099 (2010).

    Article  Google Scholar 

  10. H. A. Spiller and D. A. Quadrani, Ann. Pharmacother., 38, 776–780 (2004).

    Article  Google Scholar 

  11. M. B. Forrester, Hum. Exp. Toxicol., 27, 575–583 (2008).

    Article  Google Scholar 

  12. S. Gjedde, A. Christiansen, S. B. Pedersen, and J. Rungby, Pharmacol. Toxicol., 93, 98–99 (2003).

    Article  Google Scholar 

  13. S. Salpeter, E. Greyber, G. Pasternak, and E. Salpeter, Arch. Intern. Med., 163, 2594–2602 (2003).

    Article  Google Scholar 

  14. L. A. Bruijstens, M. van Luin, P. M. Buscher-Jungerhans, and F. H. Bosch, Neth. J. Med., 66, 185–190 (2008).

    Google Scholar 

  15. J. Martinez Calatayud, M.C. Pascual Marti, and P. Campins Falco, Analyst (London), 110, 981–984 (1985).

    Article  Google Scholar 

  16. D. H. Khanolkar and V. M. Shinde, Indian Drugs, 36, 739–742 (1999).

    Google Scholar 

  17. A. R. Bonfigli, S. Manfrini, F. Gregorio, R. Testa, I. Testa, G. De Sio, and G. Coppa, Ther. Drug Monit., 21, 330–334 (1999).

    Article  Google Scholar 

  18. O. Vesterqvist, F. Nabbie, and B. Swanson, J. Chromatogr. B: Biomed. Appl., 716, 299–304 (1998).

    Article  Google Scholar 

  19. K. H. Yuen and K. Peh, J. Chromatogr. B: Biomed. Appl., 710, 243–246 (1998).

    Article  Google Scholar 

  20. N. C. van de Merbel, G. Wilkens, S. Fowles, B. Oosterhuis, and J. H. G. Jonkman, Chromatographia, 47, 542–546 (1998).

    Article  Google Scholar 

  21. M. Ohta, M. Iwasaki, M. Kai, and Y. Ohkura, Anal. Sci., 9, 217–220 (1993).

    Article  Google Scholar 

  22. R. Hupponen, P. Ojala-Karlsson, J. Rouru, and M. Koulu, J. Chromatogr. Biomed. Appl., 121, 270–273 (1992).

    Article  Google Scholar 

  23. S. Tanabe, T. Kobayashi, and K. Kawanabe, Anal., Sci., 3, 69–73 (1987).

  24. J. Keal, A. Somogyi, and J. Chromatogr. Biomed. Appl., 378, 503–508 (1986).

    Article  Google Scholar 

  25. L. Benzi, P. Marchetti, P. Cecchetti, and R. Navalesi, J. Chromatogr. Biomed. Appl., 48, 184–186 (1986).

  26. B. G. Charles, N. W. Jacobsen, P. J. Ravenscroft, and N. C. Winston-Salem, Clin. Chem., 27, 434–436 (1981).

    Google Scholar 

  27. C. L. Cheng and C. H. Chou, J. Chromatogr. B, 762, 51–58 (2001).

  28. M. C. Lin, J. H. Lin, and K. C. Wen, J. Food Drug Anal., 9, 139–144 (2001).

    Google Scholar 

  29. F. Tache, V. David, A. Ferca, and A. Medvedovici, Microchem. J., 68, 13–19 (2001).

    Article  Google Scholar 

  30. R. T. Sane, V. J. Banavalikar, and V. R. Bhate, V. G. Nayak, Indian Drugs, 26, 647–648 (1989).

    Google Scholar 

  31. J. Z. Song, H. F. Chen, S. J. Tian, and Z. P. Sun, J. Chromatogr. B: Biomed. Appl., 708, 277–283 (1998).

    Article  Google Scholar 

  32. S. Z. El-Khateeb, H. N. Assaad, M. G. El-Bardicy, and A. S. Ahmad, Anal. Chim. Acta, 208, 321–324 (1988).

    Article  Google Scholar 

  33. V. P. Kalashnikov and A. F. Minka, Farm. Zh. (Kiev), 6, 71–73 (1999).

  34. S. S. M. Hassan, W. H. Mahmoud, M. A. F. Elmosallamy, and A. H. M. Othman, Anal. Chim. Acta, 378, 299–311 (1999).

    Article  Google Scholar 

  35. M. G. El-Bardicy, S. Z. El-Khateeb, A. K. S. Ahmad, and H. N. Assaad, Spectrosc. Lett., 22, 1173–1181 (1989).

    Article  ADS  Google Scholar 

  36. M. S. Rizk, Electroanalysis, 7, 687–691 (1995).

    Article  Google Scholar 

  37. M. S. Rizk, H. M. Abdel-Fattah, Y. M. Issa, and E. M. Atia, Anal. Lett., 26, 415–428 (1993).

    Article  Google Scholar 

  38. J. Martinez Calatayud, P. Campins Falco, and M. C. Pascual Marti, Anal. Lett., 18, 1381–1390 (1985).

    Article  Google Scholar 

  39. M. Aboudan, S. Ashour, and H. Aboudan, Asian J. Chem., 13, 1–7 (2001).

    Google Scholar 

  40. Y. G. Liu and G. Z. Li, Chinese J. Anal. Chem., 29, 1027–1029 (2001).

    Google Scholar 

  41. H. Roy, C. K. Nandi, and K. R. Parida, Int. J. App. Basic. Med. Res., 3, 55–63 (2013).

    Article  Google Scholar 

  42. T. Isaksson and T. Naes, Appl. Spectrosc., 42, 1273–1284 (1988).

    Article  ADS  Google Scholar 

  43. W. Windig and J. Shaver, R. Bro, Appl. Spectrosc., 62, 1153–1159 (2008).

    Article  ADS  Google Scholar 

  44. P. Geladi, D. MacDougall, and H. Martens, Appl. Spectrosc., 39, 491–500 (1985).

    Article  ADS  Google Scholar 

  45. A. T. Giese and C. S. French, Appl. Spectrosc., 9, 78–86 (1955).

    Article  ADS  Google Scholar 

  46. L. J. Saidel, Arch. Biochem. Biophys., 54, 185–200 (1955).

    Article  Google Scholar 

  47. S. Shibata, Angew. Chem. Int. Ed. Engl., 15, 673–678 (1976).

    Article  Google Scholar 

  48. P. Konieczko and J. Namieśnik, Ocena i Kontrola Jakości Wyników Pomiarów Analitycznych, Wydawnictwo Naukowo-Techniczne, Warszawa (2007) (in Polish).

    Google Scholar 

  49. S. Havele and S. Dhaneshwar, J. Nanomedic. Nanotechnol., 1, 102 (2010); doi: https://doi.org/10.4172/2157–7439.1000102.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pyzowski.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, p. 671, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyzowski, J., Lenartowicz, M., Sobańska, A.W. et al. Fast and Convenient NIR Spectroscopy Procedure for Determination of Metformin Hydrochloride in Tablets. J Appl Spectrosc 84, 710–715 (2017). https://doi.org/10.1007/s10812-017-0534-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0534-z

Keywords

Navigation