Skip to main content
Log in

Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study is intended to explore the potential of silver (Ag) nanoparticle-based plasma surface-enhanced Raman spectroscopy (SERS) for providing a rapid and simple "Yes/No" assessment to detect acute myocardial infarction (AMI). A simple, rapid, and accurate method of diagnosing AMI is critical to reduce mortality and improve prognosis. Techniques such as electrocardiography examination and use of cardiac troponins have not yet met the current clinical need. Therefore, alternative approaches need to be developed. Plasma samples from 32 patients with AMI and 32 healthy control (Clt) subjects were assessed. Multivariate statistical techniques, including principal component (PC) analysis and linear discriminant analysis (PCA–LDA), were employed to develop a diagnostic algorithm for differentiating between patients with AMI and Clt subjects. Furthermore, the receiver operating characteristic was tested to evaluate the performance of the PCA–LDA algorithm for AMI detection. Each plasma sample was mixed with an equal volume of Ag colloidal solution, and the SERS measurement of each plasma sample was performed. The plasma SERS spectrum showed much stronger and sharper peaks compared with the normal Raman spectrum. Tentative assignments of Raman spectroscopy bands showed specific biomolecular (e.g., proteins, adenosine, adenine, and uric acid) changes. PC analysis and LDA were employed to discriminate patients with AMI from Clt subjects, yielding a sensitivity of 87.5% and a specificity of 93.8%. The findings of this study suggest that plasma SERS has a great potential for improving AMI in the future, and this will certainly reduce the difficulty, time to draw blood, and patients’ pain to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, and S. Francos, Circulation, 129, e28 (2014).

    Article  Google Scholar 

  2. A. E. Moran, M. H. Forouzanfar, G. A. Roth, G. A. Mensah, M. Ezzati, A. Flaxman, C. J. Murray, and M. Naghavis, Circulation, 129, 1493–1501 (2014).

    Article  Google Scholar 

  3. N. Christodoulides, F. N. Pierre, X. Sanchez, L. Li, K. Hocquard, A. Patton, R. Muldoon, C. S. Miller, J. L. Ebersole, S. Redding, C. K. Yeh, W. B. Furmaga, D. A. Wampler, B. Bozkurt, C. M. Ballantyne, and J. T. McDevitts, Method. De Bakey Cardiovasc. J., 8, 6–12 (2012).

    Article  Google Scholar 

  4. K. Thygesen, J. S. Alpert, A. S. Jaffe, H. D. White, M. L. Simoons, B. R. Chaitman, H. A. Katus, F. S. Apple, B. Lindahl, D. A. Morrow, P. M. Clemmensen, P. Johanson, H. Hod, R. Underwood, J. J. Bax, R. O. Bonow, F. Pinto, R. J. Gibbons, K. A. Fox, D. Atar, L. K. Newby, M. Galvani, C. W. Hamm, B. F. Uretsky, Ph. Gabriel Steg, W. Wijns, J.-P. Bassand, P. Menasche, J. Ravkilde, E. Magnus Ohman, E. M. Antman, L. C. Wallentin, P. W. Armstrong, J. L. Januzzi, M. S. Nieminen, M. Gheorghiade, G. Filippatos, R. V. Luepker, S. P. Fortmann, W. D. Rosamond, D. Levy, D. Wood, S. C. Smith, D. Hu, J.-L. Lopez-Sendon, R. M. Robertson, D. Weaver, M. Tendera, A. A. Bove, A. N. Parkhomenko, E. J. Vasilieva, and S. Mendis, J. Am. Coll. Cardiol., 60, 1581–1598 (2012).

    Article  Google Scholar 

  5. A. Nursalim, M. Suryaatmadja, and M. Panggabeans, Acta Med. Indones., 45, 240–250 (2013).

    Google Scholar 

  6. T. Kong, R. Su, B. Zhang, Q. Zhang, and G. Chengs, Biosens. Bioelectron., 34, 267–272 (2012).

    Article  Google Scholar 

  7. D. L. Jeanmaire and R. P. Van Duynes, J. Electroanal. Chem. Interfac. Electrochem., 84, 1–20 (1977).

    Article  Google Scholar 

  8. G. L. Liu and L. P. Lees, Appl. Phys. Lett., 87, 074101 (2005).

    Article  ADS  Google Scholar 

  9. H. T. Ngo, H. N. Wang, A. M. Fales, and T. Vo-Dinhs, Anal. Chem., 85, 6378–6383 (2013).

    Article  Google Scholar 

  10. N.P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haischs, J. Phys. Chem. B., 114, 10184–10194 (2010).

    Article  Google Scholar 

  11. Y. Liu, Y.R. Chen, X. Nou, M.S. Kim, and K. Chaos, Spectroscopy, 23, (2008).

  12. B. L. Darby, P. G. Etchegoin, and E. C. Le Rus, Phys. Chem. Chem. Phys., 16, 23895–23899 (2014).

    Article  Google Scholar 

  13. T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, C.-H. Lin, J.-K. Wang, and Y.-L. Wangs, Nat. Commun., 2, 538 (2011).

    Article  ADS  Google Scholar 

  14. J. Lin, Y. Yu, B. Li, H. Huang, S. Lin, C. Li, Y. Su, S. Feng, G. Chen, and Y. Lis, Laser Phys. Lett., 9, 240 (2012).

    Article  ADS  Google Scholar 

  15. X. X. Han, B. Zhao, and Y. Ozakis, Anal. Bioanal. Chem., 394, 1719–1727 (2009).

    Article  Google Scholar 

  16. O. Lyandres, J. M. Yuen, N. C. Shah, R. P. VanDuyne, J. T. Walsh, and M. R. Glucksbergs, Diabet. Technol. Ther., 10, 257–265 (2008).

    Article  Google Scholar 

  17. J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L.Q. Sun, and Z. Huangs, J. Raman Spectrosc., 43, 497–502 (2012).

    Article  ADS  Google Scholar 

  18. A. J. Maxwell and J. P. Cookes, Curr. Opin. Nephrol. Hypertens., 7, 63–70 (1998).

    Article  Google Scholar 

  19. M. Baruah, C. K. Nath, B. Chaudhury, R. Devi, and A. S. Ivvalas, Int. J. Basic Med. Sci. Pharmac., 2, (2012).

  20. M. D. Bagatini, C. C. Martins, V. Battisti, R. M. Spanevello, D. Gasparetto, C. S. Rosa, J. F. Gonçalves, M. R. C. Schetinger, R. B. dos Santos, and V. M. Morsch, Clin. Biochem., 41, 1181–1185 (2008).

    Article  Google Scholar 

  21. L. K. Niskanen, D. E. Laaksonen, K. Nyyssönen, G. Alfthan, H.-M. Lakka, T. A. Lakka, and J. T. Salonens, Arch. Intern. Med., 164, 1546–1551 (2004).

    Article  Google Scholar 

  22. E. Tatli, M. Aktoz, M. Buyuklu, and A. Altuns, Cardiol. J., 15, 21–25 (2008).

    Google Scholar 

  23. B. L. N. Leopolds, J. Phys. Chem. B, 24, 5723–5727 (2003).

    Article  Google Scholar 

  24. S. Feng, J. Pan, Y. Wu, D. Lin, Y. Chen, G. Xi, J. Lin, and R. Chens, Sci. China Life Sci., 54, 828–834 (2011).

    Article  Google Scholar 

  25. J. Zhao, H. Lui, D. I. McLean, and H. Zengs, Appl. Spectrosc., 61, 1225–1232 (2007).

    Article  ADS  Google Scholar 

  26. Z. Movasaghi, S. Rehman, and I. U. Rehmans, Appl. Spectrosc. Rev., 42, 493–541 (2007).

    Article  ADS  Google Scholar 

  27. J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moenss, J. Raman Spectrosc., 38, 1133–1147 (2007).

    Article  ADS  Google Scholar 

  28. H. Han, X. Yan, R. Dong, G. Ban, and K. Lis, Appl. Phys. B, 94, 667–672 (2009).

    Article  ADS  Google Scholar 

  29. J.-W. Chen, X.-P. Liu, K.-J. Feng, Y. Liang, J.-H. Jiang, G.-L. Shen, and R.-Q. Yus, Biosens. Bioelectron., 24, 66–71 (2008).

    Article  Google Scholar 

  30. S. E. Bell and N. M. Sirimuthus, J. Am. Chem. Soc., 128, 15580–15581 (2006).

    Article  Google Scholar 

  31. T. T. B. Quyen, W. N. Su, K. J. Chen, C. J. Pan, J. Rick, C. C. Chang, and B. J. Hwang, J. Raman Spectrosc., 44, 1671–1677 (2013).

    Article  ADS  Google Scholar 

  32. B. P. Gaber and W. L. Peticolass, BBA-Biomembranes, 465, 260–274 (1977).

    Article  Google Scholar 

  33. P. C. Pinheiro, S. Fateixa, H. I. Nogueira, and T. Trindades, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 101, 36–39 (2013).

    Article  ADS  Google Scholar 

  34. B. Nie, R. N. Masyuko, and P. W. Bohns, Analyst, 137, 1421–1427 (2012).

    Article  ADS  Google Scholar 

  35. F. Feng, G. Zhi, H. S. Jia, L. Cheng, Y. T. Tian, and X. J. Lis, Nanotechnology, 20, 295501 (2009).

    Article  Google Scholar 

  36. R. A. Tripp, R. A. Dluhy, and Y. Zhaos, Nano Today, 3, 31–37 (2008).

    Article  Google Scholar 

  37. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zengs, Int. J. Cancer, 107, 1047–1052 (2003).

    Article  Google Scholar 

  38. E. Kočišová and M. Procházkas, J. Raman Spectrosc., 42, 1606–1610 (2011).

    Article  ADS  Google Scholar 

  39. H. Chon, S. Lee, S. Y. Yoon, E. K. Lee, S. I. Chang, and J. Choos, Chem. Commun. (Camb), 50, 1058–1060 (2014).

    Article  Google Scholar 

  40. S. Ely and R. Bernes, Circulation, 85, 893–904 (1992).

    Article  Google Scholar 

  41. H.-G. Zimmer, C. Trendelenburg, H. Kammermeier, and E. Gerlachs, Circ. Res., 32, 635–642 (1973).

    Article  Google Scholar 

  42. J. Manfredi and E.W. Holmess, Annu. Rev. Physiol., 47, 691–705 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. X. Weng.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 5, pp. 760–766, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.X., Chen, M.W., Lin, J.Y. et al. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy. J Appl Spectrosc 83, 798–804 (2016). https://doi.org/10.1007/s10812-016-0366-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0366-2

Keywords

Navigation