Skip to main content
Log in

Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction between nitrite ion and bovine hemoglobin was investigated by a spectrofluorometric technique. The experimental results indicated that the interaction causes a static quenching of the fluorescence of bovine hemoglobin, that the binding reaction is spontaneous, and that H-bonding interactions play a major role in binding of this ion to bovine hemoglobin. The formation constant for this interaction was calculated. Based on Förster's theory of nonradiative energy transfer, the binding distance between this ion and bovine hemoglobin was determined. Furthermore, the interaction of nitrite ion with tyrosine and tryptophan was investigated with synchronous fluorescence. There was no significant shift of the maximum emission wavelength with interactions of the mentioned ion with bovine hemoglobin, which implies that interaction of nitrite ion with bovine hemoglobin does not affect the microenvironment around the tryptophan and tyrosine residues. Furthermore, the effect of nitrite ion on amino acid residues of bovine hemoglobin was studied by a molecular docking technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mikuška and Z. Večeřa, Anal. Chim. Acta, 495, 225–232 (2003).

    Google Scholar 

  2. A . Cockburn, G. Brambilla, M. L. Fernández, D. Arcella, L. R. Bordajandi, B. Cottrill, C. van Peteghem, and J. L. Dorne, Toxicol. Appl. Pharmacol., 270, 209–217 (2013).

    Google Scholar 

  3. C. S. Bruning-Fann, J. B. Kaneene, and Vet. Hum. Toxicol., 35, 521–538 (1993).

    Google Scholar 

  4. N. A. Campbell and J. B. Reece, Biology, Pearson, Benjamin Cummings (2008).

  5. S. V. Lepeshkevich, J. Karpiuk, I. V. Sazanovich, and B. M. Dzhagarov, Biochemistry, 43, 1675–1684 (2004).

    Article  Google Scholar 

  6. S. V. Lepeshkevich, M. V. Parkhats, I. I. Stepuro, and B. M. Dzhagarov, Biochim. Biophys. Acta, Proteins Proteomics, 1794, 1823–1830 (2009).

    Google Scholar 

  7. J. M. Berg, Biochemistry (Loose Leaf)&Bioportal Access Card, Macmillian Higher Education (2011).

  8. B. D. Hames and N. M. Hooper, Biochemistry, Taylor & Francis (2005).

  9. T. S. D. Nascimento, R. O. L. Pereira, H. L. D. Mello, and J. Costa, Rev. Bras. Anestesiol., 8, 651–664 (2008).

    Google Scholar 

  10. B. J. C. Fernandez-Frackelton, Rosen’s Emergency Medicine: Concepts and Clinical Practice, Mosby Elsevier (2009).

  11. D. B. Kim-Shapiro, M. T. Gladwin, R. P. Patel, and N. Hogg, J. Inorg. Biochem., 99, 237–246 (2005).

    Google Scholar 

  12. J. Brooks, Proc. R. Soc. London, Ser. B, 123, 368–382 (1937).

    ADS  Google Scholar 

  13. M. P. Doyle and J. W. Hoekstra, J. Inorg. Biochem., 14, 351–358 (1981).

    Google Scholar 

  14. R. F. Steiner and I. Weinryb, Excited States of Proteins and Nucleic Acids, Plenum Press (1971).

  15. ht tp://autodock.scripps.edu

  16. Y. Q. Wang, H. M. Zhang, and B. P. Tang, J. Photochem. Photobiol., B, 100, 76–83 (2010).

    ADS  Google Scholar 

  17. R. Hirstch, In "Hemoglobin Disorders", Ed. R. Nagel, Humana Press (2003).

  18. A. S. Ladokhin, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester (2000).

    Google Scholar 

  19. A. P. Demchenko and P. R. Callis, Advanced Fluorescence Reporters in Chemistry and Biology, Springer (2010).

  20. Z. Hajihassan and A. Rabbani-Chadegani, J. Biomed. Sci., 16, 31–37 (2009).

    Google Scholar 

  21. D. Faulds, J. Balfour, P. Chrisp, and H. Langtry, Drugs, 41, 400–449 (1991).

    Article  Google Scholar 

  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, London (2009).

    Google Scholar 

  23. J. R. Lakowicz and G. Weber, Biochemistry, 12, 4161–4170 (1973).

    Article  Google Scholar 

  24. W. R. Ware, J. Phys. Chem., 66, 455–458 (1962).

    Google Scholar 

  25. G. Weber, J. Phys. Chem., 99, 1052–1059 (1995).

    Google Scholar 

  26. P. D. Ross and S. Subramanian, Biochemistry, 20, 3096–3102 (1981).

    Article  Google Scholar 

  27. A. N. Kapanidis, T. A. Laurence, N. K. Lee, E. Margeat, X. Kong, and S. Weiss, Acc. Chem. Res., 38, 523–533 (2005).

    Google Scholar 

  28. B. Valeur and J. C. Brochon, New Trends in Fluorescence Spectroscopy, Springer Press, Berlin, Germany (1999).

    Google Scholar 

  29. A. Haouz, S. E. Mohsni, C. Zentz, F. Merola, and B. Alpert, Eur. J. Biochem., 264, 250–257 (1999).

    Google Scholar 

  30. B. Valeur and J. C. Brochon, New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, Springer-Verlag GmbH (2001).

  31. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, Wiley (2012).

  32. J. N. Miller, Proc. Anal. Div. Chem. Soc., 16, 203–208 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Madrakian.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, p. 319, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madrakian, T., Bagheri, H. & Afkhami, A. Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues. J Appl Spectrosc 82, 322–328 (2015). https://doi.org/10.1007/s10812-015-0106-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0106-z

Keywords

Navigation