Skip to main content
Log in

Luminescent Study of the Binding Interaction on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone with Titanium Dioxide Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

The photophysical properties of 1,4-dihydroxy-2,3-dimethyl-9,10-anthroquinone (DHDMAQ) in the absence and presence of titanium dioxide (TiO2) nanoparticles have been studied using UV-visible absorption spectroscopy and steady-state fluorescence spectroscopy. The fluorescence intensity of the DHDMAQ decreases as the concentration of TiO2 nanoparticles increases. The quenching is characterized by a Stern–Volmer plot, which displays a positive deviation from linearity. This could be explained by static quenching models. The Stern–Volmer quenching constant, association constant, and binding constant have been calculated. The distance between DHDMAQ and TiO2 nanoparticles has also been evaluated using Forster’s theory of non-radiative energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Abo, A. A. Adeyemi, and A. O. Sobowale, Afr. J. Med. Med. Sci., 30, 9–12 (2001).

    Google Scholar 

  2. K. A. Abo and A. A. Adeyemi, Afr. J. Med. Med. Sci., 31,171–173 (2002).

    Google Scholar 

  3. M. V. Gorelik, Chemistry of Anthraquinones and Derivatives, Khimiya, Moscow, 295 (1983).

    Google Scholar 

  4. M. W. Rembold and H. E. A. Kramer, J. Soc. Dyers Colour, 94, 12–14 (1978)

    Article  Google Scholar 

  5. L. S. Klimenko, Studies of the Photochemical Ortho-Platination of 4,6-Diphenyl-5-phenoxy- of 1-Acyloxy-9,10-anthraquinone Derivatives, Doctoral Sci. (Chem.), Dissertation, Novosibirsk (2003).

  6. V. Fainya, Tables of Electron Absorption Spectra of Anthraquinone and its Derivatives, Khimiya, Leningrad (1970).

    Google Scholar 

  7. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69–96 (1995).

    Article  Google Scholar 

  8. D. G. Fu, Y. Zhang, X. Wang, J. Z. Liu, and Z. H. Lu, Chem. Lett., 30, 328–329 (2001).

    Article  Google Scholar 

  9. G. Shmid, M. Baumle, M. Greerkens, I. Heim, C. Osemann, and T. Sawitowski, Chem. Soc. Rev., 28, 179–185 (1999).

    Article  Google Scholar 

  10. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706–8715 (1993).

    Article  Google Scholar 

  11. M. A. Fox and M. T. Dulay, Chem. Rev., 93, 341–357 (1993).

    Article  Google Scholar 

  12. J. Wang, G. Zhou, C. Chyunying, H. Yu, T. Wang, Y. Ma, G. Jia, Y. Gao, B. Li, J. Sun, Y. Li, F. Jiao, Y. Zhao, and Z. Chai, Toxicol. Lett., 168, 176–185 (2007).

    Article  Google Scholar 

  13. V. Sasirekha, P. Vanelle, T. Terme, and V. Ramakrishnan, Spectrochim. Acta, A, 71, 766–772 (2008).

    Article  ADS  Google Scholar 

  14. F. A. J. Kerdesky, R. J. Ardecky, M. V. Lakshmikanthan, and M. P. Cava, J. Am. Chem. Soc., 103, 1992 (1981).

    Article  Google Scholar 

  15. L. Matyus, J. Szollosi, and A. Jenei, J. Photochem. Photobiol. B: Biol., 83, 223–236 (2006).

    Article  Google Scholar 

  16. R. Roy and S. Mukherjee, Chem. Phys. Lett., 140, 210–214 (1987).

    Article  ADS  Google Scholar 

  17. S. M. Hanagondimath, G. S. Gadaginmath, and G. C. Chikku, Appl. Radiat. Isot., 41, 817–822 (1990).

    Article  Google Scholar 

  18. M. Swaminathan and N. Radha, Spectrochim. Acta, A, 60, 1839–1843 (2004).

    Article  ADS  Google Scholar 

  19. J. S. Kadadevarmath, T. P. Giraddi, and G. C. Chikkur, J. Photosci., 4, 105–112 (1997).

    Google Scholar 

  20. M. Idowu, E. Lamprecht, and T. Nyokong, J. Photochem. Photobiol. A: Chem., 198, 7–12 (2008).

    Article  Google Scholar 

  21. C. Hariharan and A.K. Michra, Radiat. Measur., 32, 113–121 (2000).

    Article  Google Scholar 

  22. Y. J. Hu, Y. Liu, A. X. Hou, R. M. Zhao, X. S. Qu, and S. S. Qu, Acta. Chim. Sinica, 62 1519–1523 (2004).

    Google Scholar 

  23. T. Forster, Ann. Phys., 2, 55–75 (1948).

    Article  Google Scholar 

  24. L. A. Sklar, B. S. Hudson, and R. D. Simoni, Biochemistry, 16, 819–828 (1977).

    Article  Google Scholar 

  25. M. Umadevi, P. Vanelle, T. Terme, Beulah J. M. Rajkumar, and V. Ramakrishnan, J. Fluores., 19, 3–10 (2009).

    Article  Google Scholar 

  26. B. Valeur and J. C. Brochon, New Trends in Fluorescence Spectroscopy, 6th ed., Springer Press, Berlin, 84 (1999).

    Google Scholar 

  27. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley Press, New York, 250 (2001).

    Book  Google Scholar 

  28. L. Shang, X. Jiang, and S. Dong, J. Photochem. Photobiol. A, 184, 93–97 (2006).

    Article  Google Scholar 

  29. H. A. Bensi and J. H. Hildebrand, J. Am. Chem., 71, 2703 (1949).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramakrishnan.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 3, pp. 350–355, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpam, S., Yamini, D. & Ramakrishnan, V. Luminescent Study of the Binding Interaction on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone with Titanium Dioxide Nanoparticles. J Appl Spectrosc 81, 371–376 (2014). https://doi.org/10.1007/s10812-014-9939-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9939-0

Keywords

Navigation