Skip to main content
Log in

Microalgae amino acids: Method validation using gas chromatography coupled to mass spectrometry

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study aimed to develop a method for determining protein amino acids in microalgae using gas chromatography coupled with mass spectrometry. To efficiently hydrolyze the microalgal proteins and obtain the amino acids, a rotational central composite design was employed with two independent variables: reaction temperature (99.7–170.3 ºC) and hydrolysis time (1.1–27.9 h). The amino acids were derivatized with N-methyl-N-(trimethylsilyl)trifluoroacetamide and analyzed on a gas chromatograph coupled to a mass spectrometer. Subsequently, the optimized condition was validated and used to characterize the amino acid profile of Spirulina sp. This validation adhered to the criteria set by ANVISA RDC No. 166 and European Union guidelines (SANTE 11312/2021) and consisted of assessing selectivity, limits of detection and quantification, linearity, working range, precision, and accuracy. Nineteen protein amino acids were detected and quantified from the biomass of Spirulina sp., and all validation parameters yielded satisfactory results. Our findings showed that using gas chromatography coupled with mass spectrometry proved effective and reliable for determining protein amino acids in microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data experimentally generated from this study are available in the article in the form of tables (eight tables) and figures (three figures).

References

  • Agência Nacional de Vigilância Sanitária (2017) Estabelece os critérios para a validação de métodos analíticos, Brasil. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19194581/do1-2017-07-25-resolucao-rdc-n-166-de-24-de-julho-de-2017-19194412; accessed 23 June 2022

  • Alves LL, Donadel JZ, Athayde DR, da Silva MS, Klein B, Fagundes MB, de Menezes CR, Barin JS, Campagnol PCB, Wagner R, Cichoski AJ (2020) Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrason Sonochem 67:105161

    Article  Google Scholar 

  • Ambrosi MA, Reinehr CO, Bertolin TE, Costa JAV, Colla LM (2008) Propriedades de saúde de Spirulina spp. Rev Cienc Farm Basica Apl 29:109–117

    CAS  Google Scholar 

  • Andreeva A, Budenkova E, Babich O, Sukhikh S, Ulrikh E, Ivanova S, Prosekov A, Dolganyuk V (2021) Production, purification, and study of the amino acid composition of microalgae proteins. Molecules 26:2767–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aristoy MC, Toldrá F (2016) Amino acids: Determination. In: Caballero B, Fingglas PM, Toldrá F (eds) Encyclopedia of food and health, vol 1. Academic Press, Oxford, pp 141–148

    Chapter  Google Scholar 

  • Association of Official Analytical Chemists (2000) Official methods of analysis. Oxford University Press, London

    Google Scholar 

  • Barros Neto B, Scarminio IS, Bruns RE (1996) Planejamento e otimização de experimentos. Editora Unicamp, Campinas

  • Bharathiraja B, Chakravarthy M, Ranjith Kumar R, Yogendran D, Yuvaraj D, Jayamuthunagai J, Praveen Kumar R, Palani S (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew Sustain Energy Rev 47:634–653

    Article  CAS  Google Scholar 

  • Blackburn S (1978) Amino acid determination: Methods and techniques. Marcel Dekker Inc, New York

    Google Scholar 

  • Borowitzka MA (2018) Biology of microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Elsevier, Amsterdam, pp 23–72

    Chapter  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brown RJC, Roberts MR, Brett DJL (2009) Stripping voltammetry using sequential standard addition calibration with the analytes themselves acting as internal standards. Anal Chim Acta 635:1–5

    Article  CAS  PubMed  Google Scholar 

  • Carvajal JCL (2009) Caracterização e modificações químicas da proteína da microalga Spirulina (Spirulina máxima). PhD Thesis, Universidade Federal da Paraíba, Brasil

  • Chiou SH, Wang KT (1988) Simplified protein hydrolysis with methanesulphonic acid at elevated temperature for the complete amino acid analysis of proteins. J Chromatogr A 448:404–410

    Article  CAS  Google Scholar 

  • De Jesus CS, Uebel LS, Costa SS, Miranda AL, de Morais EG, de Morais MG, Costa JAV, Nunes IL, Ferreira ES, Druzian JI (2018) Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour Technol 256:86–94

    Article  PubMed  Google Scholar 

  • De la Torre F, Cañas RA, Pascual MB, Avila C, Cánovas FM (2014) Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot 65:5527–5534

    Article  PubMed  Google Scholar 

  • Deng P, Zhan Y, Chen X, Zhong D (2012) Derivatization methods for quantitative bioanalysis by LC–MS/MS. Bioanalysis 4:49–69

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Vieira K, Pinheiro P, Zepka L, Jacob-Lopes E (2019) Biodiesel from microalgae. In: Pinto LFR, Takase EM, Santana HS (eds) A closer look at biodiesel production. Nova Science Publishers, New York, pp 317–342

    Google Scholar 

  • Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg A (2011) NMR and MS methods for metabonomics. Meth Mol Biol 691:385–415

    Article  CAS  Google Scholar 

  • Dillon JC, Phuc AP, Dubacq JP (1995) Nutritional value of the alga Spirulina. World Rev Nutr Diet 77:32–46

    Article  CAS  PubMed  Google Scholar 

  • Do Nascimento RF, de Lima ACA, Barbosa PGA, da Silva VPA (2018) Cromatografia gasosa: aspectos teóricos e práticos. Imprensa Universitária, Fortaleza

    Google Scholar 

  • Donato NR (2018) Secagem de Spirulina (Spirulina platensis) e utilização na produção de biscoitos. PhD Thesis, Universidade Federal de Campina Grande, Brasil

  • Otter DE (2012) Standardised methods for amino acid analysis of food. Br J Nutr 108:230–237

    Article  Google Scholar 

  • Food and Agriculture Organization (2011) Dietary protein quality evaluation. FAO, Rome

    Google Scholar 

  • Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A 826:109–134

    Article  CAS  PubMed  Google Scholar 

  • Grob K (2001) Split and splitless injection for quantitative gas chromatography. Wiley, Colorado

    Book  Google Scholar 

  • Grobbelaar JU (2003) Algal nutrition - Mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, New Jersey, pp 95–115

    Chapter  Google Scholar 

  • Grosshagauer S, Kraemer K, Somoza V (2020) The true value of Spirulina. J Agric Food Chem 68:4109–4115

    Article  CAS  PubMed  Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  CAS  PubMed  Google Scholar 

  • Hamed I, Özogul F, Özogul Y, Regenstein JM (2015) Marine bioactive compounds and their health benefits: A review. Compr Rev Food Sci Food Saf 14:446–465

    Article  CAS  Google Scholar 

  • Jacob-Lopes E, Maroneze MM, Deprá MC, Sartori RB, Dias RR, Zepka LQ (2019) Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Curr Opin Food Sci 25:1–7

    Article  Google Scholar 

  • Kang Z, Wang Y, Wang Q, Qi Q (2011) Metabolic engineering to improve 5-aminolevulinic acid production. Bioeng Bugs 2:342–345

    Article  PubMed  Google Scholar 

  • Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2009) Advances in amino acid analysis. Anal Bioanal Chem 393:445–452

    Article  CAS  PubMed  Google Scholar 

  • Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Koek MM, van der Kloet FM, Kleemann R, Kooistra T, Verheij ER, Hankemeier T (2011) Semi-automated non-target processing in GC×GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics 7:1–14

    Article  CAS  PubMed  Google Scholar 

  • Krumpochova P, Bruyneel B, Molenaar D, Koukou A, Wuhrer M, Niessen WMA, Giera M (2015) Amino acid analysis using chromatography-mass spectrometry: An inter platform comparison study. J Pharm Biomed Anal 114:398–407

    Article  CAS  PubMed  Google Scholar 

  • Leite F (2008) Validação em análise química. Átomo, Campinas

  • Genova JL, Leal IF, Rupolo PE, dos Reis LE, Barbosa VM (2017) Aminoácidos limitantes na nutrição de suínos. Nutritime 14:7032–7045

    Google Scholar 

  • Lupatini AL (2016) Extração de proteínas e carboidratos da biomassa de Spirulina platensis e caracterização da fração proteica. MSc Thesis, Universidade Tecnológica Federal do Paraná, Brasil

  • Machado AR, Graça CS, de Assis LM, de Souza-Soares LA (2017) Uma abordagem sobre caracterização e avaliação do potencial antioxidante de extratos fenólicos de microalgas Spirulina sp. LEB-18 e Chlorella pyrenoidosa. Rev Cienc Agrar 40:264–278

  • Mandalakis M, Apostolaki M, Stephanou EG (2010) Trace analysis of free and combined amino acids in atmospheric aerosols by gas chromatography–mass spectrometry. J Chromatogr A 1217:143–150

    Article  CAS  PubMed  Google Scholar 

  • Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A (2015) Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol 31:1–9

    Article  PubMed  Google Scholar 

  • Morist A, Montesinos JL, Cusidó JA, Gòdia F (2001) Recovery and treatment of Spirulina platensis cells cultured in a continuous photobioreactor to be used as food. Process Biochem 37:535–547

    Article  Google Scholar 

  • Muys M, Sui Y, Schwaiger B, Lesueur C, Vandenheuvel D, Vermeir P, Vlaeminck SE (2018) High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresour Technol 275:247–257

    Article  PubMed  Google Scholar 

  • Nethravathy MU, Mehar JG, Mudliar SN, Shekh AY (2019) Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Compr Rev Food Sci Food Saf 18:1882–1897

    Article  Google Scholar 

  • Nollet LML, Toldrá F (2012) Handbook of analysis of active compounds in functional foods. CRC Press, Florida

    Book  Google Scholar 

  • Peace RW, Gilani GS (2005) Chromatographic determination of amino acids in foods. J AOAC Int 88:877–887

    Article  CAS  PubMed  Google Scholar 

  • Pires CV, Oliveira MGA, Rosa JC, Costa NMB (2006) Qualidade nutricional e escore químico de aminoácidos de diferentes fontes protéicas. Cienc Tecnol Aliment 26:179–187

    Article  CAS  Google Scholar 

  • Queiroz MI, Treptow RDO, Koetz PR (1998) Caracterização sensorial do odor da Aphanothece Microscopic Nägeli desidratada. Bol Cent Pesqui Process Alimen 16:55–70

    Google Scholar 

  • Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quim Nova 27:771–780

    Article  CAS  Google Scholar 

  • Ribas VB, da Silva KF, dis Santos BN, da Silva Cunha JP, Wagner R, Centenaro GS, Furlan VJM (2022) Otimização do sistema cromatográfico para determinação de aminoácidos. In: de Medeiros JA, Niro CM (eds) Pesquisas e atualizações em ciência dos alimentos. Agron Food Academy, São Carlos, pp 703–710

  • Rodrigues MI, Iemma AF (2005) Planejamento de experimentos e otimização de processos: uma estratégia sequencial de planejamentos. Casa do Pão Editora, Campinas

  • Sante (2021) Analytical quality control and method validation procedures for pesticide residues analysis in food and feed SANTE 11312/2021. Accredia, Rome

    Google Scholar 

  • Sartori RB, Vendruscolo RG, Ribeiro SR, Furlan VJM, Wagner R, Zepka LQ, Jacob-Lopes E (2022) The role of photo-cycles in the modulation of growth and biochemical profile of microalgae: Part I—Food interest compounds. Life 12:462–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sittampalam GS, Ellis RM, Miner DJ, Rickard EC, Clodfelter DK (1988) Evaluation of amino acid analysis as reference method to quantitate highly purified proteins. J AOAC Int 71:833–838

    Article  CAS  Google Scholar 

  • Tessier R, Calvez J, Khodorova N, Gaudichon C (2021) Protein and amino acid digestibility of 15N Spirulina in rats. Eur J Nutr 60:2263–2269

    Article  CAS  PubMed  Google Scholar 

  • Ullah K, Ahmad M, Sofia SVK, Lu P, Harvey A, Zafar M, Sultana S (2015) Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel 143:414–423

    Article  CAS  Google Scholar 

  • Vendruscolo RG, Facchi MMX, Maroneze MM, Fagundes MB, Cichoski AJ, Zepka LQ, Barin JS, Jacob-Lopes E, Wagner R (2018) Show more polar and non-polar intracellular compounds from microalgae: Methods of simultaneous extraction, gas chromatography determination and comparative analysis. Food Res Int 109:204–212

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo RG, Fagundes MB, Jacob-Lopes E, Wagner R (2019) Analytical strategies for using gas chromatography to control and optimize microalgae bioprocessing. Curr Opin Food Sci 25:73–81

    Article  Google Scholar 

  • Vendruscolo RG, Deprá MC, Pinheiro PN, Furlan VJM, Barin JS, Cichoski AJ, de Menezes CR, Zepka LQ, Jacob-Lopes E, Wagner R (2022) Food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultivations associated with carbon dioxide mitigation. Food Res Int 160:111590

    Article  CAS  PubMed  Google Scholar 

  • Volkmann H (2006) Utilização de rejeito de dessalinizador como meio de cultura alternativo para cultivo de Arthrospira (Spirulina) platensis. MSc Thesis, Universidade Federal de Santa Catarina, Brasil

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Zhu L (2015) Microalgal culture strategies for biofuel production: a review. Biofuel Bioprod Biorefin 9:801–814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support, to the Federal University of Pampa and the Federal University of Santa Maria for financial assistance and physical structure, and to the Atlas Assessoria Linguística for language editing.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

M.F.: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Roles/Writing—original draft.

S.C.: Investigation; Methodology.

B.R.: Investigation; Methodology.

F.S.: Investigation; Methodology.

N.S.: Data curation; Formal analysis; Investigation; Methodology.

C: Investigation; Methodology.

W: Conceptualization; Funding acquisition; Resources; Supervision; Visualization.

GV: Conceptualization; Supervision; Visualization.

All authors: Writing—review & editing.

Corresponding author

Correspondence to Raquel Guidetti Vendruscolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlan, J.M., da Silva Cunha, J.P., Ribas, V.B. et al. Microalgae amino acids: Method validation using gas chromatography coupled to mass spectrometry. J Appl Phycol 36, 1153–1167 (2024). https://doi.org/10.1007/s10811-023-03168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03168-9

Keywords

Navigation