Skip to main content
Log in

Cultivation of heterotrophic Euglena gracilis: The effects of recycled media on culture growth and associations with growth regulating phytohormone profiles

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In response to the rapid expansion of the worldwide population, there is an urgent need for the development of new, more environmentally-conscious, food sources. In this context, microalgae, such as Euglena, are of interest due to their capacity for large-scale cultivation and flexible bioproduct output. Media recycling techniques have been proposed as waste- and cost-reducing measures for large-scale algal cultivation. Culture dynamics and phytohormone production during novel fermentation conditions can enhance growth and biomass production; yet, little is known about the impacts on growth regulating phytohormones such as cytokinins (CKs) and abscisic acid (ABA) under these conditions. Using Euglena gracilis, an organic culture medium was recycled at 25, 50 and 75% inclusion rates through multiple growth cycles to evaluate impacts on biomass production and phytohormone profiles. A 25% recycled inclusion rate resulted in biomass accumulation similar to the control over one growth cycle. Subsequent recycled rates and growth cycling reduced E. gracilis biomass accumulation relative to the control, even with cell counts continuing to increase throughout, highlighting that the recycled medium inclusion and the number of repeated culture cycles impacts the biomass output of E. gracilis. Phytohormone analysis indicated that E. gracilis synthesized CKs via the tRNA-degradation pathway with increased hormone levels corresponding to higher recycle rates; ABA increased in the supernatant at higher recycle rates but was not detected in any pellet fractions. This research expands upon the roles of CKs and ABA as signaling molecules and adds guidance for building a suite of conditions specific for industrial product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Aldholmi M, Ahmad R, Carretero-Molina D, Pérez-Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, T. Gefflaut T, Carlsson H, Maklakov A, O’Neill E, Field RA, Wilkinson B, O’Connell M, Ganesan A, (2022) Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angew Chem Int 61:e202203175

  • Aoki MM, Kisiala AB, Rahman T, Morrison EN, Emery RJN (2021) Cytokinins are pervasive among common in vitro culture media: An analysis of their forms, concentrations and potential sources. J Biotechnol 334:43–46

    Article  CAS  PubMed  Google Scholar 

  • Aoki MM, Kisiala AB, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN (2019a) Cytokinin Detection during the Dictyostelium discoideum life cycle: Profiles are dynamic and affect cell growth and spore germination. Biomolecules 9:702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki MM, Seegobin M, Kisiala A, Noble A, Brunetti C, Emery RJN (2019) Phytohormone metabolism in human cells: Cytokinins are taken up and interconverted in HeLa cell culture. FASEB Bioadv 1:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  CAS  PubMed  Google Scholar 

  • Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, Gillissen B, Kühn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34:13–26

    Article  PubMed  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotech 14:421–426

    Article  CAS  Google Scholar 

  • Chi W, Zheng L, He C, Han B, Zheng M, Gao W, Sun C, Zhou G, Gao X (2017) Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Express 7:59

  • Cook J R (1968) The cultivation and growth of Euglena. In: Buetow DE (ed.), The Biology of Euglena. I: General Biology and Ultrastructure. Academic Press, New York, pp 243–314

  • Cowan AK, Rose PD (1991) Abscisic acid metabolism in salt-stressed cells of Dunaliella salina: Possible interrelationship with β-carotene accumulation. Plant Physiol 97:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Discart V, Bilad MR, Marbelia L, Vankelecom IFJ (2014) Bioresource Technology Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol 152:321–328

    Article  CAS  PubMed  Google Scholar 

  • Ebenezer TE, Low RS, O'Neill EC, Huang I, DeSimone A, Farrow SC, Field RA, Ginger ML, Guerrero SA, Hammond M, Hampl V, Horst G, Ishikawa T, Karnkowska A, Linton EW, Myler P, Nakazawa M, Cardol P, Sánchez-Thomas R, Saville BJ, Shah MR, Simpson AGB, Sur A, Suzuki K, Tyler KM, Zimba PV, Hall N, Field MC (2022) Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 11:bio059561

  • Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq W, Suh WI, Park MS, Yang J (2014) Water use and its recycling in microalgae cultivation for biofuel application. Bioresour Technol 184:73–81

    Article  PubMed  Google Scholar 

  • Farooq W (2021) Sustainable production of microalgae biomass for biofuel and chemicals through recycling of water and nutrient within the biorefinery context: A review. GCB Bioenergy 13:914–940

    Article  CAS  Google Scholar 

  • Fernández FGA, Reis A, Wijffels RH, Barbosa M, Verdelho V, Llamas B (2021) The role of microalgae in the bioeconomy. New Biotech 61:99–107

    Article  Google Scholar 

  • Fret J, Roef L, Blust R, Diels L, Tavernier S, Vyverman W, Michiels M (2017) Reuse of rejuvenated media during laboratory and pilot-scale cultivation of Nannochloropsis sp. Algal Res 27:265–273

    Article  Google Scholar 

  • Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajdosová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Zizková E, Hanus J, Dancák M, Trávnícek B, Pesek B, Krupicka M, Vanková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840

    Article  PubMed  Google Scholar 

  • Gibb M, Kisiala AB, Morrison EN, Emery RJN (2020) The origins and roles of methylthiolated cytokinins: Evidence from among life Kingdoms. Front Cell Dev Biol 8:605672

  • Gissibl A, Sun A, Care A, Nevalainen H, Sunna A (2019) Bioproducts from Euglena gracilis: Synthesis and applications. Front Bioeng Biotechnol 7:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: A review. Fermentation 4:25

    Article  Google Scholar 

  • Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812

    Article  CAS  Google Scholar 

  • Hayashi M, Toda K, Ishiko H, Komatsu R, Kitaoka S (1994) Effects of shifting pH in the stationary phase of growth on the chemical composition of Euglena gracilis. Biosci Biotech Biochem 58:1964–1967

    Article  CAS  Google Scholar 

  • Hirose N, Makita N, Yamaya T, Sakakibara H (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside trans-porter in rice suggest a function in cytokinin transport. Plant Physiol 138:196–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch R, Hartung W, Gimmler H (1989) Abscisic acid content of algae under stress. Bot Acta 102:326–334

    Article  CAS  Google Scholar 

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology — From genetics to synthetic biology. Biotechnol Adv 33:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Hnain AK, Cockburn LM, Lefebvre DD (2011) Microbiological processes for waste conversion to bioenergy products: Approaches and directions. Environ Rev 19:214–237

    Article  CAS  Google Scholar 

  • Jirásková D, Poulíčková A, Novák O, Sedláková K, Hradecká V, Strnad M (2009) High-throughput screening technology for monitoring phytohormone production in microalgae. J Phycol 45:108–118

    Article  PubMed  Google Scholar 

  • Kim S, Wirasnita R, Lee D, Yu J, Lee T (2021) Enhancement of growth and paramylon production of Euglena gracilis by upcycling of spent tomato byproduct as an alternative medium. Appl Sci 11:8182

    Article  CAS  Google Scholar 

  • Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610

    Article  CAS  Google Scholar 

  • Kisiala A, Kambhampati S, Stock NL, Aoki M, Emery RJN (2019) Quantification of cytokinins using high-resolution accurate-mass orbitrap mass spectrometry and parallel reaction monitoring (PRM). Anal Chem 91:15049–15056

    Article  CAS  PubMed  Google Scholar 

  • Kisiala A, Laffont C, Emery RJ, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant Microbe Interact 26:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, Martinoia E, Sakakibara H, Lee Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A 111:7150–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leedale GF (1964) Pellicle structure in Euglena. Brit Phycol Bull 2:291–306

    Article  Google Scholar 

  • Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs 14:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Loftus SE, Johnson ZI (2017) Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Res 24:154–166

    Article  Google Scholar 

  • Lowrey J, Armenta RE, Brooks MS (2016) Nutrient and media recycling in heterotrophic microalgae cultures. Appl Microbiol Biotechnol 100:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Tarkowská D, Turečková V, Luo T, Xin Y, Li J, Wang Q, Jiao N, Strnad M, Xu J (2014) Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J 80:52–68

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    Article  CAS  PubMed  Google Scholar 

  • Mathieu-Rivet E, Mati-Baouche N, Walet-Balieu ML, Lerouge P, Bardor M (2020) N- and O-glycosylation pathways in the microalgae polyphyletic group. Front Plant Sci 11:609993

  • Morrison EN, Emery RJ, Saville BJ (2015) Phytohormone involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS One 10:e0130945

  • Morrison EN, Emery RJN, Saville BJ (2017) Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol 66:726–742

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN (2021) Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta 254:45

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Nguyen QT, Dang DH, Emery RJN (2023) Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics. Environ Pollut 320:121094

  • Noble A, Kisiala A, Galer A, Clysdale D, Emery RJN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254

    Article  CAS  Google Scholar 

  • O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA (2015) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst 11:2808–2820

    Article  CAS  PubMed  Google Scholar 

  • Ord G, Cameron I, Fensom D (1977) The effect of pH and ABA on the hydraulic conductivity of Nitella membranes. Can J Bot 55:1–4

    Article  CAS  Google Scholar 

  • Ördög V, Stirk WA, Lenobel R, Bancifova M, Strnad M, van Staden J, Szigeti J, Nemeth L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FME, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Pils B, Heyl A (2009) Unraveling the evolution of cytokinin signaling. Plant Physiol 151:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogué F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Romanenko EA, Kosakovskaya IV, Romanenko PA (2015) Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes. Pt I. Auxins, abscisic acid, ethylene. Int J Algae 17:275–289

    Article  Google Scholar 

  • Romanov GA, Schmülling T (2022) On the biological activity of cytokinin free bases and their ribosides. Planta 255:27

    Article  CAS  Google Scholar 

  • Rösch C, Skarka J, Wegerer N (2012) Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Bioresour Technol 107:191–199

    Article  PubMed  Google Scholar 

  • Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043

    Article  Google Scholar 

  • Sakakibara H (2006) Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–439

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H (2021) Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J 105:421–430

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Calderon-Villalobos LI, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  PubMed  Google Scholar 

  • Satiat-Jeunemaitre B, Hawes C (1993) Insights into the secretory pathway and vesicular transport in plant cells. Biol Cell 79:7–15

    Article  Google Scholar 

  • Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66:4873–4884

    Article  PubMed  Google Scholar 

  • Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    Article  CAS  PubMed  Google Scholar 

  • Seegobin M, Kisiala A, Noble A, Kaplan D, Brunetti C, Emery RJN (2018) Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway. FASEB J 32:6575–6581

    Article  CAS  Google Scholar 

  • Spíchal L (2012) Cytokinins - Recent news and views of evolutionally old molecules. Funct Plant Biol 39:267–284

    Article  Google Scholar 

  • Stirk W, Novák O, Strnad M, van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24

    Article  CAS  Google Scholar 

  • Stirk WA, van Staden J (2010) Flow of cytokinins through the environment. Plant Growth Regul 62:101–116

    Article  CAS  Google Scholar 

  • Stirk WA, Ördög V, Novák O, Rolčík J, Strnad M, Bálint P, van Staden J (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Bock RM (1977) Isolation and identification of cytokinins from Euglena gracilis transfer ribonucleic acid. Biochemistry 16:1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Bock RM, Skoog F (1977) Subcellular localization of cytokinins in transfer ribonucleic acid. Plant Physiol 59:558–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takezawa D, Komatsu K, Sakata Y (2011) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res 124:437–453

    Article  CAS  PubMed  Google Scholar 

  • Tominaga N, Takahata M, Tominaga H (1993) Effects of NaCl and KNO3 concentrations on the abscisic acid content of Dunaliella sp. (Chlorophyta). Hydrobiologia 267:163–168

    Article  CAS  Google Scholar 

  • Vigani M, Parisi C, Rodriguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, Enzing C (2015) Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci Technol 42:81–92

    Article  CAS  Google Scholar 

  • Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG (2018) Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One 13:e0195329

  • Xu JM, Xiong JQ (2023) Boosting the yields of microalgal biomass and high-value added products by phytohormones: A mechanistic insight using transcriptomics. J Cleaner Production 393:136175

  • Xinyi E, Crofcheck C, Crocker M (2016) Application of recycled media and algae-based anaerobic digestate in Scenedesmus cultivation. J Renew Sustain Energy 8:013116

  • Yokoya NA, Stirk WA, van Staden J, Novak O, Tureckova V, Pencik A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205

    Article  CAS  Google Scholar 

  • Yoshioka K, Suzuki K, Osanai T (2020) Effect of pH on metabolite excretion and cell morphology of Euglena gracilis under dark, anaerobic conditions. Algal Res 51:102084

  • Yu X, Chen L, Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56

  • Zhou J, Lyu Y, Richlen M, Anderson DM, Cai Z (2016) Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRC Crit Rev Plant Sci 35:81–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Hong DD, Wakisaka M (2019) Phytic acid extracted from rice bran as a growth promoter for Euglena gracilis. Open Chem 17:57–63

    Article  CAS  Google Scholar 

  • Žižková E, Kubeš M, Dobrev PI, Přibyl P, Šimura J, Zahajská L, Záveská Drábková L, Novák O, Motyka V (2017) Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann Bot 119:151–166

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the Natural Sciences and Engineering Council of Canada Discovery Grant (NSERC RGPIN-05436) and NSERC College-University Idea to Innovation Grant Program (CUI2I 470778-14). The authors thank Canadian Foundation for Innovation: Leaders Opportunity Fund and Ontario Research Fund: Research Infrastructure for funding instrumentation, including the Thermo Fisher QExactive Orbitrap, in the Water Quality Centre at Trent University.

Funding

Financial support from the Natural Sciences and Engineering Council of Canada Discovery Grant (NSERC RGPIN-05436) to RJNE, ENM and TS and NSERC College-University Idea to Innovation Grant Program (CUI2I 470778–14) to RJNE, ABK and AMK is gratefully acknowledged. Partial funding to AMK was provided by Noblegen Inc. The authors thank Canadian Foundation for Innovation: Leaders Opportunity Fund and Ontario Research Fund: Research Infrastructure for funding instrumentation, including the Thermo Fisher QExactive Orbitrap, in the Water Quality Centre at Trent University.

Author information

Authors and Affiliations

Authors

Contributions

AMK: Methodology, Formal analysis, Investigation, Writing Original Draft; ENM: Data analysis, Figure and Table creation, Writing-review and Editing; TS: Writing Draft; ABK: Formal analysis; KHR: Investigation; AN: Funding acquisition; RJN: Conceptualization, Project administration, Supervision, Funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Erin N. Morrison.

Ethics declarations

Competing interests

Noblegen Inc. is a commercial, for-profit organization that is using E. gracilis in future food products and biosolutions. Partial funding for this research was provided by Noblegen Inc. KHR is an employee of Noblegen Inc. AN is the CEO and founder of Noblegen Inc. and is a shareholder.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1199 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhne, A.M., Morrison, E.N., Sultana, T. et al. Cultivation of heterotrophic Euglena gracilis: The effects of recycled media on culture growth and associations with growth regulating phytohormone profiles. J Appl Phycol 35, 2161–2175 (2023). https://doi.org/10.1007/s10811-023-03062-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03062-4

Keywords

Navigation