Skip to main content
Log in

Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: foliar spray or root drench?

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae-based products applied as biostimulants have recently attracted the attention of researchers. The effect of two different methods of application of a Chlorella vulgaris extract, foliar spray and root drenching, was evaluated in lettuce seedlings by monitoring their morpho-biometric parameters and chlorophyll, carotenoid, and total protein contents. The biochemical response, through the study of enzymatic activities involved in primary and secondary metabolism, was also evaluated. Two consecutive applications, 1 week apart, of the C. vulgaris extract were carried out on the lettuce seedlings grown on an inert substrate (pumice) irrigated with Hoagland solution. Lettuce seedlings were then collected at 1, 4, and 7 days after the first treatment and at 7 days after the second treatment. Both application methods positively affected the growth of lettuce seedlings, increasing the dry matter, chlorophyll, carotenoid, and protein contents in the edible portion of the plant. From a biochemical point of view, the extract application methods influenced the primary and secondary metabolism by coordinated regulation of C and N metabolic pathways, which may represent the key point in the mechanism of action. The foliar application mostly influenced the activities of enzymes involved in nitrogen primary metabolism, whereas the root drenching application mainly affected the enzymatic activities involved in carbon primary metabolism. These results are very promising since both application methods of C. vulgaris extract acted as a biostimulant on lettuce seedlings, although their mechanism of action seems to be quite different.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alisdair R, Carrari F, Lee JS (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–485

  • Avila C, Rotella JR, Canovas FM, De Castro IN, Valpuesta V (1987) Different characteristics of the two glutamate synthetases in green leaves of Lycopersicon esculentum. Plant Physiol 85:1036–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacellar Mendes LB, Vermelho AB (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6:152–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baglieri A, Cadili V, Monterumici CM, Gennari M, Tabasso S, Montoneri E, Nardi S, Negre M (2014) Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci Hortic 176:194–199

    Article  CAS  Google Scholar 

  • Baglieri A, Sidella S, Barone V, Fragalà F, Silkina A, Nègre M, Gennari M (2016) Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut Res 23:18165–18174

    Article  CAS  Google Scholar 

  • Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, Cagnin M, Pizzeghello D, Moliterni VMC, Mandolino G, Fornasier F, Squartini A, Nardi S, Concheri G (2018) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061–1071

    Article  CAS  Google Scholar 

  • Barone V, Puglisi I, Fragalà F, Lo Piero AR, Giuffrida F, Baglieri, (2019a) Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J Appl Phycol 31:465–470

    Article  CAS  Google Scholar 

  • Barone V, Puglisi I, Fragalà F, Stevanato P, Baglieri A (2019b) Effect of living cells of microalgae or their extracts on soil enzyme activities. Arch Agron Soil Sci 65:712–726

    Article  CAS  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: a review. Biol Agric Hortic 31:1–17

    Article  Google Scholar 

  • Canovas FM, Canton FR, Gallardo F, Garcia-Gutierrez A, de Vincente A (1991) Accumulation of glutamine synthetase during early development of maritime pine (Pinus pinaster) seedlings. Planta 185:372–378

    Article  CAS  PubMed  Google Scholar 

  • Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y (2018) Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci 9:1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Colla G, Rouphael Y, Lucini L, Canaguier R, Stefanoni W, Fiorillo A, Cardarelli M (2016) Protein hydrolysate-based biostimulants: origin, biological activity and application methods. Acta Hortic 1148:27–34

    Article  Google Scholar 

  • Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N, Haesaert G, De Gelder L (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377

    Article  CAS  Google Scholar 

  • Elhafiz AA, Elhafiz AA, Gaur SS, Hamdany N, Osman M, Lakshmi TVR (2015) Chlorella vulgaris and Chlorella pyrenoidosa live cells appear to be promising sustainable biofertilizer to grow rice, lettuce, cucumber and eggplant in the UAE soils. Recent Res Sci Technol 7:14–21

    Google Scholar 

  • Ertani A, Pizzeghello D, Baglieri A, Cadili V, Tambone F (2013) Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J Geochem Explor 129:103–111

    Article  CAS  Google Scholar 

  • Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S (2009) Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutr Soil Sci 172:237–244

    Article  CAS  Google Scholar 

  • Faheed FA, Abd-El Fattah Z (2008) Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agri Soc Sci 4:165–169

    Google Scholar 

  • Fan D, Hodges DM, Critchley AT, Prithiviraj B (2013) A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Com Soil Sci Plant Anal 44:1873–1884

    Article  CAS  Google Scholar 

  • Ghaderiardakani F, Collas E, Damiano DK, Tagg K, Graham NS, Coates JC (2019) Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci Rep 9:1983–1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta N, Gupta AK, Gaur VS, Kumar A (2012) Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs. Sci World J 2012:625731

    Article  Google Scholar 

  • Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53:905–916

    Article  CAS  PubMed  Google Scholar 

  • Hultberg M, Carlsson AS, Gustafsson S (2013) Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresour Technol 136:401–406

    Article  CAS  PubMed  Google Scholar 

  • Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, Fuentes M, Francisco SS, Baigorri R, Cruz F (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31–52

    Article  CAS  Google Scholar 

  • Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ 26:857–865

    Article  PubMed  Google Scholar 

  • Kopta T, Pavlíková M, Sękara A, Pokluda R, Maršálek B (2018) Effect of bacterial-algal biostimulant on the yield and internal quality of lettuce (Lactuca sativa L.) produced for spring and summer crop. Not Bot Hort Agrobot 46:615–621

  • La Bella E, Baglieri A, Rovetto EI, Stevanato P, Puglisi I (2021) Foliar spray application of Chlorella vulgaris extract: effect on the growth of lettuce seedlings. Agronomy 11:308

    Article  CAS  Google Scholar 

  • Lea PJ (1993) Nitrogen metabolism. In: Lea PJ, Leegood RC (eds) Plant biochemistry and molecular biology. Wiley, New York, pp 155–180

    Google Scholar 

  • Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015) The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hortic 182:124–133

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Maurya R, Paliwal C, Chokshi K, Pancha I, Ghosh T, Satpati GG, Pal R, Ghosh A, Mishra S (2016) Hydrolysate of lipid extracted microalgal biomass residue: an algal growth promoter and enhancer. Bioresour Technol 207:197–204

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Sakurai M, Sakuta M (2001) Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Sci 160:355–360

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    Article  CAS  PubMed  Google Scholar 

  • Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B (2012) Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom 13:643

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Schiavon M, Ertani A (2016) Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric 73:18–23

    Article  CAS  Google Scholar 

  • Parrado J, Bautista J, Romero EJ, García-Martínez AM, Friaza V, Tejada M (2008) Production of a carob enzymatic extract: potential use as a biofertilizer. Bioresour Technol 99:2312–2318

    Article  CAS  PubMed  Google Scholar 

  • Plaza M, Herrero M, Cifuentes A, Ibanez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170

    Article  CAS  PubMed  Google Scholar 

  • Puglisi I, Barone V, Fragalà F, Stevanato P, Baglieri A, Vitale A (2020a) Effect of microalgal extracts from Chlorella vulgaris and Scenedesmus quadricauda on germination of Beta vulgaris seeds. Plants 9:675

    Article  CAS  PubMed Central  Google Scholar 

  • Puglisi I, Barone V, Sidella S, Coppa M, Broccanello C, Gennari M, Baglieri A (2018) Biostimulant activity of humic like substances from agro-industrial waste on Chlorella vulgaris and Scenedesmus quadricauda. Eur J Phycol 53:433–442

    Article  CAS  Google Scholar 

  • Puglisi I, La Bella E, Rovetto EI, Lo Piero AR, Baglieri A (2020b) Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants 9:123

    Article  CAS  PubMed Central  Google Scholar 

  • Rani A, Singh K, Ahuja PS, Kumar S (2012) Molecular regulation of catechins biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Gene 495:205–210

  • Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:192

    Article  CAS  Google Scholar 

  • Rouphael Y, De Micco V, Arena C, Raimondi G, Colla G, De Pascale S (2017) Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J Appl Phycol 29:459–470

    Article  CAS  Google Scholar 

  • Schiavon M, Ertani A, Nardi S (2008) Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J Agric Food Chem 56:11800–11808

    Article  CAS  PubMed  Google Scholar 

  • Sestili F, Rouphael Y, Cardarelli M, Pucci A, Bonini P, Canaguier R, Colla G (2018) Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front Plant Sci 9:1233

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaaban MM (2001a) Green microalgae water extract as foliar feeding to wheat plants. Pak J Biol Sci 4:628–632

  • Shaaban MM (2001b) Nutritional status and growth of maise plants as affected by green microalgae as soil additives. J Biol Sci 6:475–479

  • Silambarasan S, Logeswari P, Sivaramakrishnan R, Kamaraj B, ThuyLan Chi N, Cornejo P (2021) Cultivation of Nostoc sp LS04 in municipal wastewater for biodiesel production and their deoiled biomass cellular extracts as biostimulants for Lactuca sativa growth improvement. Chemosphere 280:130644

  • Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G (2010) A novel type of seaweed extract as a natural alter-native to the use of iron chelates in strawberry production. Sci Hortic 125:263–269

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 4:63–69

    Google Scholar 

  • Supraja KV, Behera B, Balasubramanian P (2020) Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Ind Crops Prod 151:112453

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2018) Plant physiology and development. 6th ed. Sinauer Associates, Oxford University Press: Oxford, UK

  • Vanni A, Anfossi L, Cignetti A, Baglieri A, Gennari M (2006) Degradation of pyrimethanil in soil: influence of light, oxygen, and microbial activity. J Environ Sci Health - B 41:67–80

    Article  CAS  PubMed  Google Scholar 

  • Yahia EM, Carrillo-López A, Malda G, Suzán-Azpiri H, Queijeiro Quiroz M (2018) Photosynthesis. In: Yahia E, Carrillo-Lopez A (eds) Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Duxford, pp 47–72

    Google Scholar 

  • Zhang J, Wang X, Zhou Q (2017) Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass Bioenergy 97:132–138

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Stefania Lombardo for her technical support during the manuscript draft.

Funding

The authors thank the grants which supported this work: PON “RICERCA E INNOVAZIONE” 2014–2020, Azione II—Obiettivo Specifico 1b—Progetto “Miglioramento delle produzioni agroalimentari mediterranee in condizioni di carenza di risorse idriche—WATER4AGRIFOOD,” and “STARTING GRANT 2020”—University of Catania (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Puglisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puglisi, I., La Bella, E., Rovetto, E.I. et al. Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: foliar spray or root drench?. J Appl Phycol 34, 889–901 (2022). https://doi.org/10.1007/s10811-021-02671-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02671-1

Keywords

Navigation