Skip to main content
Log in

Effects of indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellic acid (GA3) on the direct regeneration of Gelidium floridanum explants

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Gelidium floridanum is a red seaweed of economic importance as it yields high-quality agar which is extracted exclusively from material harvested from natural beds. Phytoregulators have not been explored in macroalgal culture as a probable alternative for large-scale farming of seaweed. Therefore, this study aimed to analyze the direct regeneration of G. floridanum explants using indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellic acid (GA). Explants (5 mm) were treated in liquid medium supplemented with IAA (0.57, 5.7, and 57 μM), JA (2, 4, and 8 mM), and GA (29, 43, and 58 mM) for 48 h and then further cultivated for 20 days. To observe the morphology and formation of new axes, micrographs were taken on the 5th day of culture using stereoscopic microscopy, and explants were processed for light and scanning electron microscopy. On the 20th day micrographs were obtained through stereoscopic microscopy for a final count of formed axes. After 5 days the formation of upright axes was greater and with a greater average size in the 2 and 4 mM JA treatments and floridean starch grains accumulated at the base, not being observed in the apical region. After 20 days the formation of new explants was higher in all treatments with IAA. We conclude that the direct regeneration of G. floridanum explants occurs from the medullary cells and starts in the first week of culture. Among the phytoregulators tested, JA contributed to the earlier formation of the upright axes, but after 20 days, IAA proved to be more efficient in the formation and size of these axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defence and reproduction. Genet Mol Res 9:484–505

    Article  CAS  PubMed  Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Bouzon ZL, Schmidt EC, De Almeida AC, Yokoya NS, De Oliveira MC, Chow F (2011) Cytochemical characterization and ultrastructural organization in calluses of the agarophyte Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Micron 42:80–86

    Article  CAS  PubMed  Google Scholar 

  • Callaway E (2015) Lab staple agar hit by seaweed shortage. Nature News 528:171–172

    Article  CAS  Google Scholar 

  • Charrier B, Rolland E, Gupta V, Reddy CRK (2015) Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques. Front Plant Sci 6:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol 48:355–381

    Article  CAS  Google Scholar 

  • Croce ME, Villar MA, Parodi ER (2015) Assessment of alternative sources of seaweed polysaccharides in Argentina: potentials of the agarophyte Gelidium crinale (Hare ex Turner) Gaillon (Rhodophyta, Gelidiales). J Appl Phycol 27:2099–2110

    Article  CAS  Google Scholar 

  • Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

    Google Scholar 

  • Fei XG, Huang LJ (1991) Artificial sporeling and field cultivation of Gelidium in China. Hydrobiologia 221:119–124

    Article  Google Scholar 

  • Friedlander M (2008) Israeli R & D activities in seaweed cultivation. Israel J Plant Sci 56:15–28

    Article  CAS  Google Scholar 

  • Fujii S, Yamamoto R, Miyamoto K, Ueda J (1997) Occurrence of jasmonic acid in Dunaliella (Dunaliellales, Chlorophyta). Phycol Res 45:223–226

    Article  CAS  Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry. Academic Press, London

    Google Scholar 

  • Garcia-Jimenez P, Robaina RR (2017) Volatiles in the aquatic marine ecosystem: Ethylene and related plant hormones and sporulation in red seaweeds. In: Kumar M, Ralph P (eds) Systems Biology of Marine Ecosystems. Springer, Cham, pp 99–116

    Chapter  Google Scholar 

  • Ge L, Peh CYC, Yong JWH, Tan SN, Hua L, Ong ES (2007) Analyses of gibberellins by capillary electrophoresis–mass spectrometry combined with solid-phase extraction. J Chromatogr A 1159:242–249

    Article  CAS  PubMed  Google Scholar 

  • Gordon EM, McCandless EL (1973) Ultrastructure and histochemistry of Chondrus crispus Stackhouse. Proc Nova Scotia Inst Sci 27:111–133

    Google Scholar 

  • Hamberg M, Gardner HW (1992) Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim Biophy Acta 1165:1–18

    Article  CAS  Google Scholar 

  • Hamberg M, Gerwick WH (1993) Biosynthesis of vicinal dihydroxy fatty acids in the red alga Gracilariopsis lemaneiformis: identification of a sodium-dependent 12-lipoxygenase and a hydroperoxide isomerase. Arch Biochem Biophys 305:115–122

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Demus U, Teichmann C, Parthier B, Wasternack C (1996) Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell Physiol 37:641–649

    Article  CAS  PubMed  Google Scholar 

  • Hayashi L (2007) Contribuição à maricultura da alga vermelha Kappaphycus alvarezii (Rhodophyta, Solieriaceae) para produção de carragenanas. Doctoral dissertation, São Paulo University

  • Hayashi L, Yokoya NS, Ostini S, Pereira RT, BragaE S, Oliveira EC (2008) Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture 277:185–191

    Article  CAS  Google Scholar 

  • He L, Wang L, Wang L, Shen S (2018) Effects of methyl jasmonate on the composition of volatile compounds in Pyropia yezoensis. J Ocean Univ China 17:291–296

    Article  CAS  Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533

    Article  CAS  PubMed  Google Scholar 

  • Joseph I, Chennubhotla VSK (1999) Gibberellic acid and 2,4-D as growth regulators in a laboratory culture of seaweeds. Indian J Geo-Mar Sci 28:66–69

    Google Scholar 

  • Krupina MV, Dathe W (1991) Occurrence of jasmonic acid in the red alga Gelidium latifolium. Z Naturforsch C 46:1127–1129

    Article  CAS  Google Scholar 

  • Küpper FC, Gaquerel E, Cosse A, Adas F, Peters AF, Müller DG, Potin P (2009) Free fatty acids and methyl jasmonate trigger defence reactions in Laminaria digitata. Plant Cell Physiol 50:789–800

    Article  PubMed  CAS  Google Scholar 

  • Mantell SH (1994) Princípios de biotecnologia em plantas. Uma introdução a engenharia genética em plantas. Brasil, Sociedad Brasilera de Genética, 1st ed

  • McConn M (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCully ME (1968) Histological studies on the genus Fucus: III. Fine structure and possible functions of the epidermal cells of the vegetative thallus. J Cell Sci 3:1–16

    Article  CAS  PubMed  Google Scholar 

  • McCully ME (1970) The histological localization of the structural polysaccharides of sea weeds. Ann NY Acad Sci 175:702–711

    Article  CAS  Google Scholar 

  • McHugh D (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441:105

    Google Scholar 

  • McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of Phycological Methods. Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Melo RA, Harger BW, Neushul M (1991) Gelidium cultivation in the sea. Hydrobiologia 221:91–106

    Article  Google Scholar 

  • Moss BM (1974) Morphogenesis. In: Stewart WDP (ed) Algae Physiology and Biochemistry. Blackwell Scientific Publications, Oxford, pp 788–813

    Google Scholar 

  • Neves FA, Simioni C, Bouzon ZL, Hayashi L (2015) Effects of spindle inhibitors and phytoregulators on the micropropagation of Kappaphycus alvarezii (Rhodophyta, Gigartinales). J Appl Phycol 27:437–445

    Article  CAS  Google Scholar 

  • Pilar GJ, Olegario BR, Rafael RR (2016) Occurrence of jasmonates during cystocarp development in the red alga Grateloupia imbricata. J Phycol 52:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200

    Article  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2014) Biologia vegetal, 8th edn. Guanabara Dois, Rio de Janeiro

    Google Scholar 

  • Reddy CRK, Jha B, Fujita Y, Ohno M (2008) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617

    Article  Google Scholar 

  • Santelices B, Santelices B (1988) Synopsis of biological data on the seaweed genera Gelidium and Pterocladia (Rhodophyta). Food Agriculure Organisation of the United Nations, Rome

    Google Scholar 

  • Santos R, Melo RA (2018) Global shortage of technical agars: back to basics (resource management). J Appl Phycol 30:2463–2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger, E, Møller, I M, Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6th Edn. Artmed Editora. p 858

  • Tibubos KR, Hurtado AQ, Critchley AT (2017) Direct formation of axes in new plantlets of Kappaphycus alvarezii (Doty) Doty, as influenced by the use of AMPEP K+, spindle inhibitors, and plant growth hormones. J Appl Phycol 29:2345–2349

    Article  CAS  Google Scholar 

  • Trick HN, Pueschel CM (1990) Cytochemistry of pit plugs in Bossiella californica (Corallinales, Rhodophyta). Phycologia 29:403–409

    Article  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol 7:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoya NS, Yoneshigue-Valentin Y (2011) Micropropagation as a tool for sustainable utilization and conservation of populations of Rhodophyta. Rev Bras Farmacog 21:334–339

    Article  Google Scholar 

  • Zitta CS, Rover T, Hayashi L, Bouzon ZL (2013) Callus ontogeny of the Kappaphycus alvarezii (Rhodophyta, Gigartinales) brown tetrasporophyte strain. J Appl Phycol 25:615–629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Tomazi Pereira.

Ethics declarations

Conflicts of interest/competing interests

No.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, D., Pereira, D.T., Carvalho, M.F. et al. Effects of indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellic acid (GA3) on the direct regeneration of Gelidium floridanum explants. J Appl Phycol 33, 1089–1099 (2021). https://doi.org/10.1007/s10811-020-02344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02344-5

Keywords

Navigation