Skip to main content
Log in

Nitrogen starvation-inducible promoter of microalga Neochloris oleoabundans lipogenic gene encoding diacylglycerol acyltransferase 2

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgal lipid triacylglycerol (TAG) is a promising source for sustainable production of biofuels and edible oils. TAG biosynthesis in microalgae can be induced by nitrogen starvation (−N); however, regulation of the genes involved in this process is poorly known. To explore the regulation of gene encoding diacylglycerol acyltransferase 2 of oleaginous microalga Neochloris oleoabundans (NeoDGAT2) responsible for TAG biosynthesis, regulatory sequence of NeoDGAT2 gene (RDG) was cloned, and its functional regions were mapped by deletion analysis using the modified cyan fluorescent protein gene (CFP) as a reporter. The efficiency of CFP gene mTurquoise2 (Tq) without any intron, Tq1 and Tq2 with one and two copies of Chlamydomonas reinhardtii rbcS2 intron 1, respectively, was evaluated; Tq2 exhibited the highest CFP fluorescence activity in N. oleoabundans was therefore used as reporter for RDG deletion analysis. Deletion analysis of RDG revealed that the −N inducible region contained the predicted binding site of MYB transcription factor (MYB-bs). Specific binding between MYB-bs of RDG and the DNA-binding domain of MYB-related transcription factor ROC40 from C. reinhardtii was observed using electrophoretic mobility shift assay. Therefore, the corresponding MYB transcription factor in N. oleoabundans is probably the transcription factor regulating NeoDGAT2. The interaction between MYB transcription factor and the MYB-bs may play a role in regulating −N induced expression of NeoDGAT2, affecting TAG accumulation. MYB transcription factors can be the potential targets for engineering to increase TAG content. Increasing TAG content is essential for products derived from microalgal TAG to achieve economic viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against Hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412

    Article  CAS  PubMed  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycological Studies, vol IV. University of Texas, Austin, pp 1–95

    Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Chungjatupornchai W, Watcharawipas A (2015) Diacylglycerol acyltransferase type 2 cDNA from the oleaginous microalga Neochloris oleoabundans: cloning and functional characterization. J Appl Phycol 27:1499–1507

    Article  CAS  Google Scholar 

  • Chungjatupornchai W, Kitraksa P, Fa-aroonsawat S (2016) Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J Appl Phycol 28:191–199

    Article  CAS  Google Scholar 

  • Chungjatupornchai W, Areerat K, Fa-Aroonsawat S (2019) Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase. Microb Cell Factories 18:53

    Article  Google Scholar 

  • Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43:134–176

    Article  CAS  PubMed  Google Scholar 

  • Cormack RS, Somssich IE (1997) Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene 194:273–276

    Article  CAS  PubMed  Google Scholar 

  • de Lomana ALG, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV (2015) Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol Biofuels 8:207

  • Deason TR, Silva PC, Watanabe S, Floyd GL (1991) Taxonomic status of the species of the green algal genus Neochloris. Plant Systemat Evol 177:213–219

    Article  Google Scholar 

  • Draaisma RB, Wijffels RH, Slegers PE, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotech 24:169–177

    Article  CAS  PubMed  Google Scholar 

  • Draper J (1988) Plant genetic transformation and gene expression : a laboratory manual. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361

    Article  CAS  PubMed  Google Scholar 

  • Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751

    Article  PubMed  CAS  Google Scholar 

  • Goncalves EC, Koh J, Zhu N, Yoo M-J, Chen S, Matsuo T, Johnson JV, Rathinasabapathi B (2016a) Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm. Plant J 85:743–757

    Article  CAS  PubMed  Google Scholar 

  • Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B (2016b) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotech J 14:1649–1660

    Article  CAS  Google Scholar 

  • Gong Y, Zhang J, Guo X, Wan X, Liang Z, Hu CJ, Jiang M (2013) Identification and characterization of PtDGAT2B, an acyltransferase of the DGAT2 acyl-coenzyme a: diacylglycerol acyltransferase family in the diatom Phaeodactylum tricornutum. FEBS Lett 587:481–487

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo H, Iwamoto M, Ugawa Y, Higo K (1998) PLACE: a database of plant cis -acting regulatory DNA elements. Nucl Acids Res 26:358–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang D, Li J, Jing G, Ning K, Xu J (2014) Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis. Sci Rep 4:5454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung C-H, Ho M-Y, Kanehara K, Nakamura Y (2013) Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii. FEBS Lett 587:2364–2370

    Article  CAS  PubMed  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

  • Klaitong P, Fa-Aroonsawat S, Chungjatupornchai W (2017) Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microb Cell Factories 16:61–61

    Article  CAS  Google Scholar 

  • Klok A, Lamers P, Martens D, Draaisma R, Wijffels R (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82:504–522

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  • Lung S-C, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073–1088

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Wu T, Kou Y, Shi Y, Zhang Y, Liu J (2019) Characterization of type I and type II diacylglycerol acyltransferases from the emerging model alga Chlorella zofingiensis reveals their functional complementarity and engineering potential. Biotechnol Biofuels 12:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 22:918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngan CY, Wong C-H, Choi C, Yoshinaga Y, Louie K, Jia J, Chen C, Bowen B, Cheng H, Leonelli L, Kuo R, Baran R, García-Cerdán JG, Pratap A, Wang M, Lim J, Tice H, Daum C, Xu J, Northen T, Visel A, Bristow J, Niyogi KK, Wei C-L (2015) Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nature Plants 1:15107

    Article  CAS  PubMed  Google Scholar 

  • Nobusawa T, Hori K, Mori H, Kurokawa K, Ohta H (2017) Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis. Plant J 90:547–559

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prouse MB, Campbell MM (2012) The interaction between MYB proteins and their target DNA binding sites. Biochim Biophys Acta -Gene Regul Mech 1819:67–77

    Article  CAS  Google Scholar 

  • Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–531

    Article  CAS  PubMed  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose AB, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464

    Article  CAS  PubMed  Google Scholar 

  • Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    Article  CAS  PubMed  Google Scholar 

  • Scragg A, Illman A, Carden A, Shales S, Bioenergy (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73

    Article  CAS  Google Scholar 

  • Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251

    Article  CAS  PubMed  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enz Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song W-Y, Nishida I, Li-Beisson Y, Lee Y (2016) Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotech J 14:2158–2167

    Article  CAS  Google Scholar 

  • Yang D-C, Jin J, Kong L, Meng Y-Q, Gao G, Luo J, Tian F (2016) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucl Acids Res 45:D1040–D1045

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ir. Joachim Goedhart, University of Amsterdam, The Netherlands, for providing plasmid pmTurquoise2-C1. Paeka Klaitong was supported by The Royal Golden Jubilee PhD Scholarship from The Thailand Research Fund (TRF).

Funding

This work was supported by Mahidol University and TRF (grant number: BRG5780005) to Wipa Chungjatupornchai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wipa Chungjatupornchai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaitong, P., Watcharawipas, A., Fa-aroonsawat, S. et al. Nitrogen starvation-inducible promoter of microalga Neochloris oleoabundans lipogenic gene encoding diacylglycerol acyltransferase 2. J Appl Phycol 33, 331–341 (2021). https://doi.org/10.1007/s10811-020-02307-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02307-w

Keywords

Navigation