Skip to main content
Log in

Effects of bloom-forming species dinoflagellate Karenia mikimotoi on the development and photosynthetic characteristics of the sexually propagated embryos of macroalga Sargassum fusiformis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The sexual reproduction period (May–June) of Sargassum fusiformis, an important aquaculture seaweed in China, coincides with a time of high frequency of algal blooms caused by dinoflagellates such as Karenia mikimotoi. We studied the effects of dense K. mikimotoi suspensions on the sexual reproduction and subsequent development of the fertilized eggs of S. fusiformis in the laboratory. The results showed that K. mikimotoi did not inhibit the egg fertilization, but significantly (P < 0.05) inhibited the relative growth rate (RGR), chlorophyll (Chl) a content and maximum relative electron transport rate (rETRmax) of the embryos. On the fifth day of the culture period, the size of the embryos co-cultivated with K. mikimotoi at 1000 μmol Chl a L−1 began to decline significantly (P < 0.05) compared with the mono-cultured embryos and the difference increased with prolonged exposure. After 10 days, the RGR, Chl a content, and rETRmax of the embryos cultivated with K. mikimotoi decreased by 28.44%, 4.99%, and 63.99%, respectively, as compared with the ones cultivated without K. mikimotoi. These results indicated that the blooms formed by K. mikimotoi had little suppression on the fertilization of S. fusiforme eggs, but it did significantly inhibit the development and photosynthetic activities of the embryos, which would have adverse effects on the S. fusiforme farming industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal bloom and eutrophication: nutrient sources, composition, and consequences. Estuar Coasts 25:704–726

    Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal bloom: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Google Scholar 

  • Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    CAS  PubMed  Google Scholar 

  • Bracken MES, Williams SL (2013) Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore. Ecology 94:1944–1954

    PubMed  Google Scholar 

  • Branch GM, Bustamante RH, Robinson TB (2013) Impacts of a ‘black tide’ harmful algal bloom on rocky-shore intertidal communities on the West Coast of South Africa. Harmful Algae 24:54–64

    Google Scholar 

  • Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14:156–178

    Google Scholar 

  • Chang FH (2011) Toxic effects of three closely-related dinoflagellates, Karenia concordia, K. brevisulcata and K. mikimotoi (Gymnodiniales, Dinophyceae) on other microalgal species. Harmful Algae 10:181–187

    CAS  Google Scholar 

  • Davidson K, Miller P, Wilding TA, Shutler J, Bresnan E, Kennington K, Swan S (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 8:349–361

    Google Scholar 

  • Davidson K, Gowen RJ, Harrison PJ, Fleming LE, Hoagland P, Moschonas G (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146:206–216

    CAS  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Google Scholar 

  • Fang T, Ma Z (2018) Effects of Microcystis aeruginosa’ secondary metabolites on growth and effective quantum yield of Chlorella vulgaris. J Lake Sci 30:732–740 (in Chinese with English abstract)

    Google Scholar 

  • Fujikura U, Horiguchi G, Ponce MR, Micol JL, Tsukaya H (2009) Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. Plant J 59:499–508

    CAS  PubMed  Google Scholar 

  • Gentien P (1998) Bloom dynamics and ecophysiology of the Gymnodinium mikimotoi species complex. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 155–173

    Google Scholar 

  • Gentien P, Lunven M, Lazure P, Youenou A, Crassous MP (2007) Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Philos Trans Roy Soc B 362:1937–1946

  • Glenn EP, Doty MS (1992) Water motion affects the growth rates of Kappaphycus alvarezii and related red seaweeds. Aquaculture 108:233–246

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanle MH (eds) Culture of marine animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Hansen G, Daugbjerg N, Henriksen P (2000) Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (=Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. J Phycol 36:394–410

    Google Scholar 

  • Huo Y, Wu H, Chai Z, Xu S, Han F, Dong L, He P (2012) Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 326:99–105

    Google Scholar 

  • Imai I (2015) Interactions between harmful algae and algicidal and growth-inhibiting bacteria associated with seaweeds and seagrasses. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds.) Marine protists: diversity and dynamics. Springer Japan, pp 597–619

  • Imai I, Yamaguchi M, Hori Y (2006) Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res 1:71–84

    Google Scholar 

  • Inaba N, Trainer VL, Onishi Y, Ishii K-I, Wyllie-Echeverria S, Imai I (2017) Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful Algae 62:136–147

    PubMed  Google Scholar 

  • Jakob T, Schreiber U, Kirchesch V, Langner U, Wilhelm C (2005) Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynth Res 83:343–361

    CAS  PubMed  Google Scholar 

  • Kim YK, Kim SH, Lee K-S (2015) Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuar Coasts 38:558–568

    CAS  Google Scholar 

  • Krumhansl KA, Scheibling RE (2012) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302

    Google Scholar 

  • Kubanek J, Hicks MK, Naar J, Villareal TA (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50:883–895

    Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Google Scholar 

  • Lawton L, Marsalek B, Padisák J, Chorus I (1999) Determination of cyanobacteria in the laboratory. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. E & FN Spon, London, pp 347–367

    Google Scholar 

  • Lee K-S, Park J-I, Kim YK, Park SR, Kim J-H (2007) Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar Ecol Prog Ser 342:105–115

    CAS  Google Scholar 

  • Lenes JM, Walsh JJ, Darrow BP (2013) Simulating cell death in the termination of Karenia brevis blooms: implications for predicting aerosol toxicity vectors to humans. Mar Ecol Prog Ser 493:71–81

    CAS  Google Scholar 

  • Li X, Yan T, Lin J, Yu R, Zhou M (2017) Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae 61:1–12

    Google Scholar 

  • Lorentsen SH, Sjøtun K, Grémillet D (2010) Multi-trophic consequences of kelp harvest. Biol Conserv 143:2054–2062

    Google Scholar 

  • Lotze HK, Micheli F, Palumbi SR, Sala E (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    PubMed  Google Scholar 

  • Lü S, Cen J, Wang J, Ou L (2019) The research status quo, hazard, and ecological mechanisms of Karenia mikimotoi red tide in coastal waters of China. Oceanol Limnol Sinica 50:487–484 (in Chinese with English abstract)

    Google Scholar 

  • Ma Z, Gao K (2010) Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ Exp Bot 68:208–213

    CAS  Google Scholar 

  • Ma Z, Fang T, Thring RW, Li Y, Yu H, Zhou Q, Zhao M (2015) Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae 48:21–29

    CAS  PubMed  Google Scholar 

  • Ma Z, Wu M, Lin L, Thring RW, Yu H, Zhang X, Zhao M (2017) Allelopathic interactions between the macroalga Hizikia fusiformis (Harvey) and the harmful blooms-forming dinoflagellate Karenia mikimotoi. Harmful Algae 65:19–26

    PubMed  Google Scholar 

  • Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M (2018) Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55

    CAS  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    CAS  Google Scholar 

  • Neely T, Campbell L (2006) A modified assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae 5:592–598

    CAS  Google Scholar 

  • Nishikawa T, Hori Y, Tanida K, Imai I (2007) Population dynamics of the harmful diatom Eucampia zodiacus Ehrenberg causing bleachings of Porphyra thalli in aquaculture in Harima-Nada, the Seto Inland Sea, Japan. Harmful Algae 6:763–773

    CAS  Google Scholar 

  • O’Boyle S, McDermott G, Silke J, Cusack C (2016) Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland. Harmful Algae 53:77–85

    PubMed  Google Scholar 

  • Pang S, Chen L, Zhuang D, Fei X, Sun J (2005) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: enhanced seedling production in tumbled culture. Aquaculture 245:321–329

    Google Scholar 

  • Pang S, Gao S, Sun J (2006) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: controlled fertilization and early development of seedlings in raceway tanks in ambient light and temperature. J Appl Phycol 18:723–731

    Google Scholar 

  • Pang S, Zhang Z, Zhao H, Sun J (2007) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J Appl Phycol 19:557–565

    CAS  Google Scholar 

  • Pang S, Shan T, Zhang Z, Sun J (2008) Cultivation of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura: mass production of zygote-derived seedlings under commercial cultivation conditions, a case study experience. Aquac Res 39:1408–1415

    Google Scholar 

  • Parrish CC, Bodennec G, Gentien P (1998) Haemolytic glycoglycerolipids from Gymnodinium species. Phytochemistry 47:783–787

    CAS  PubMed  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the determination of chlorophylls a and b. Photosynth Res 73:149–156

    CAS  PubMed  Google Scholar 

  • Poulin RX, Hogan S, Poulson-Ellestad KL, Brown E, Fernández FM, Kubanek J (2018) Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Sci Rep-UK 8:9572

    Google Scholar 

  • Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae 10:39–48

    CAS  Google Scholar 

  • Radulovich R, Umanzor S, Cabrera R, Mata R (2015) Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 436:40–46

    Google Scholar 

  • Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commn 397:603–660

    CAS  Google Scholar 

  • Rolton A, Soudant P, Vignier J, Pierce R, Henry M, Shumway SE, Bricelj VM, Volety AK (2015) Susceptibility of gametes and embryos of the eastern oyster, Crassostrea virginica, to Karenia brevis and its toxins. Toxicon 99:6–15

    CAS  PubMed  Google Scholar 

  • Sala E, Knowlton N (2006) Global marine biodiversity trends. Annu Rev Environ Resour 31:93–122

    Google Scholar 

  • Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Lett 43:5829–5832

    CAS  Google Scholar 

  • Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T (2005) Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimotoi. Tetrahedron Lett 46:3537–3540

  • Schreiber U (1994) New emitter-detector-cuvette assembly for measuring modulated chlorophyll fluorescence of highly diluted suspension in conjunction with the standard PAM fluorometer. Z Naturforsch C 49:646–656

    CAS  Google Scholar 

  • Schwartz ER, Poulin RX, Mojib N, Kubanek J (2016) Chemical ecology of marine plankton. Nat Prod Rep 33:843–860

    CAS  PubMed  Google Scholar 

  • Shanley E, Vargo GA (1993) Cellular composition, growth, photosynthesis, and respiration rates of Gymnodinium breve under varying light levels. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 919–923

    Google Scholar 

  • Shen A, Ishizaka J, Yang M, Ouyang L, Yin Y, Ma Z (2019) Changes in community structure and photosynthetic activities of total phytoplankton species during the growth, maintenance, and dissipation phases of a Prorocentrum donghaiense bloom. Harmful Algae 82:35–43

    PubMed  Google Scholar 

  • Sheng J, Malkiel E, Katz J, Adolf JE, Place AR (2010) A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proc Natl Acad Sci U S A 107:2082–2087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153

    Google Scholar 

  • Stumpf RP, Culver ME, Tester PA, Tomlinson M, Kirkpatrick GJ, Pederson BA, Truby E, Ransibrahmanakulf V, Soracco M (2003) Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2:147–160

    CAS  Google Scholar 

  • Sun J, Fang J, Zhu Z (1996) A preliminary study on the reproductive biology of Sargassum fursiforme. J Zhejiang College Fisheries 15:243–249 (in Chinese with English abstract)

    Google Scholar 

  • Tang Y, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10:480–488

    Google Scholar 

  • Tester PA, Stumpf RP, Steidinger K (1998) Ocean color imagery: what is the minimum detection level for Gymnodinium breve blooms? In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galacia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 149–151

    Google Scholar 

  • Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380

    Google Scholar 

  • Walsh JJ, Jolliff JK, Darrow BP, Lenes JM, Milroy SP, Remsen A, Dieterle DA, Carder KL, Chen FR, Vargo GA, Weisberg RH, Fanning KA, Muller-Karger FE, Shinn E, Steidinger KA, Heil CA, Tomas CR, Prospero JS, Lee TN, Kirkpatrick GJ, Whitledge TE, Stockwell DA, Villareal TA, Jochens AE, Bontempi PS (2006) Red tides in the Gulf of Mexico: where, when, and why? J Geophys Res Space Physics 111:1–46

  • Wang Y, Yu Z, Song X, Tang X, Zhang S (2007) Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates. Aquat Bot 86:139–147

    Google Scholar 

  • Wang Y, Zhou B, Tang X (2009) Effects of two species of macroalgae—Ulva pertusa and Gracilaria lemaneiformis—on growth of Heterosigma akashiwo (Raphidophyceae). J Appl Phycol 21:375–385

    Google Scholar 

  • Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    CAS  PubMed  Google Scholar 

  • Xia P, Lu D, Zhu D, Du W (2007) Trend and characteristics of harmful algal blooms in Zhejiang coastal waters. J Mar Sci 25:47–56 (in Chinese with English abstract)

    Google Scholar 

  • Yamasaki Y, Kim DI, Matsuyama Y, Oda T, Honjo T (2004) Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi. J Biosci Bioeng 97:212–215

    CAS  PubMed  Google Scholar 

  • Yang Y, Chai Z, Wang Q, Chen W, He Z, Jiang S (2015) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Google Scholar 

Download references

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This study was largely supported by the National Key R&D Program of China (No. 2018YFD0901500), the National Natural Science Foundation (Nos. 41876124; 61871293; 41706147), and Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography (No. LMEB201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Shang, T., Zhang, T. et al. Effects of bloom-forming species dinoflagellate Karenia mikimotoi on the development and photosynthetic characteristics of the sexually propagated embryos of macroalga Sargassum fusiformis. J Appl Phycol 32, 1263–1273 (2020). https://doi.org/10.1007/s10811-019-02011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-02011-4

Keywords

Navigation