Skip to main content
Log in

Exploring reliable reference genes for gene expression normalization in Karenia mikimotoi using real-time PCR

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The dinoflagellate Karenia mikimotoi is one of the most noxious species that can form harmful algal blooms in coastal areas worldwide, causing serious damage to aquaculture and fisheries. In the present study, twelve commonly reported candidate genes (cob, cyc, eif4e, ef2, mdh, sam, α-tub, β-tub, actin, cal, 18s, and gapdh) were selected to evaluate their expression stability under different temperatures, salinities, phosphorus and nitrogen limitation, and different time points over a diel cycle in K. mikimotoi. In addition, three algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate and select the most suitable reference genes. It was observed that α-tub and eif4e were the most suitable reference genes for all samples. In contrast, ef2 and 18s genes showed least stability. Further, a list of stable genes, including α-tub, eif4e, gapdh, and mdh was generated that can be used as reference genes in specific environmental condition in K. mikimotoi. The gene expression profile of KFcp gene was evaluated over a diel cycle using the most stable reference genes. Results revealed that the expression of KFcp with transcripts abundances was higher in light period and lower in dark period, indicating similar gene expression profile of this gene in typically reported algae. This study provides suitable reference genes for further research on the expression and regulation of genes related to important biochemical processes in K. mikimotoi, improving our understanding of the molecular mechanism of its behind toxin secretion and bloom formation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  • Aoki K, Kameda T, Yamatogi T, Ishida N, Hirae S, Kawaguchi M, Syutou T (2017) Spatio-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: factors controlling horizontal and vertical distribution. Mar Pollut Bull 124:130–138

    Article  CAS  Google Scholar 

  • Boldt L, Yellowlees D, Leggat W (2009) Measuring Symbiodinium sp. gene expression patterns with quantitative real-time PCR. Proceedings of the 11th ICRS, Ft Lauderdale, Florida 7–11 July 2008 pp 118–122

  • Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  Google Scholar 

  • Deng YY, Hu ZX, Ma ZP, Tang YZ (2016) Validation of reference genes for gene expression studies in the dinoflagellate Akashiwo sanguinea by quantitative real-time RT-PCR. Acta Oceanol Sin 35:106–113

    Article  CAS  Google Scholar 

  • Giraldo E, Díaz A, Corral J, García A (2012) Applicability of 2-DE to assess differences in the protein profile between cold storage and not cold storage in nectarine fruits. J Proteome 75:5774–5782

    Article  CAS  Google Scholar 

  • Guo R, Ki JS (2012) Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate Prorocentrum minimum using real-time PCR. Eur J Protistol 48:199–206

    Article  Google Scholar 

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:71

    Article  Google Scholar 

  • Ji N, Li L, Lin L, Lin S (2015) Screening for suitable reference genes for quantitative real-time PCR in Heterosigma akashiwo (Raphidophyceae). PLoS One 10:e0132183

    Article  Google Scholar 

  • Kianianmomeni A, Hallmann A (2013) Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR. Mol Biol Rep 40:6691–6699

    Article  CAS  Google Scholar 

  • Kimura K, Okuda S, Nakayama K, Shikata T, Takahashi F, Yamaguchi H, Skamoto S, Yamaguchi M, Tomaru Y (2015) RNA sequencing revealed numerous polyketide synthase genes in the harmful dinoflagellate Karenia mikimotoi. PLoS One 10:e0142731

    Article  Google Scholar 

  • Kosir R, Acimovic J, Golicnik M, Perse M, Majdic G, Fink M, Rozman D (2010) Determination of reference genes for circadian studies in different tissues and mouse strains. BMC Mol Biol 11:60

    Article  Google Scholar 

  • Leblanc C, Falciatore A, Watanabe M, Bowler C (1999) Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms. Plant Mol Biol 40:1031–1044

    Article  CAS  Google Scholar 

  • Lei Q-Y, Lu S-H (2011) Molecular ecological responses of the dinoflagellate Karenia mikimotoi to phosphate stress. Harmful Algae 12:39–45

    Article  CAS  Google Scholar 

  • Lei Q-Y, Lü S-H (2011) Molecular ecological responses of dinoflagellate, Karenia mikimotoi to environmental nitrate stress. Mar Poll Bull 62:2692–2699

    Article  CAS  Google Scholar 

  • Lin X, Zhang H, Huang B, Lin S (2011) Alkaline phosphatase gene sequence and transcriptional regulation by phosphate limitation in Amphidinium carterae (Dinophyceae). J Phycol 47:1110–1120

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luo H, Lin X, Li L, Lin L, Zhang C, Lin S (2017) Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilisation. Environ Microbiol 19:4506–4518

    Article  CAS  Google Scholar 

  • Main CR, Doll C, Bianco C, Greenfield DI, Coyne KJ (2014) Effects of growth phase, diel cycle and macronutrient stress on the quantification of Heterosigma akashiwo using qPCR and SHA. Harmful Algae 37:92–99

    Article  CAS  Google Scholar 

  • Monroe EA, Johnson JG, Wang Z, Pierce RK, Van Dolah FM (2010) Characterization and expression of nuclear-encoded polyketide synthases in the brevetoxin-producing dinoflagellate Karenia brevis. J Phycol 46:541–552

    Article  CAS  Google Scholar 

  • Morey JS, Monroe EA, Kinney AL, Beal M, Johnson JG, Hitchcock GL, Van Dolah FM (2011) Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346

    Article  CAS  Google Scholar 

  • Niaz Z, Sui Z, Riaz S, Liu Y, Shang E, Xing Q, Khan S, Du Q, Zhou W (2019) Identification of valid reference genes for the normalization of RT-qPCR gene expression data in Alexandrium catenella under different nutritional conditions. J Appl Phycol 31:1819–1833

    Article  CAS  Google Scholar 

  • Oeltjen A, Marquardt J, Rhiel E (2004) Differential circadian expression of genes fcp2 and fcp6 in Cyclotella cryptica. Int Microbiol 7:127–131

    CAS  PubMed  Google Scholar 

  • Parrish CC, Bodennec G, Gentien P (1998) Haemolytic glycoglycerolipids from Gymnodinium species. Phytochemistry 47:783–787

    Article  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  • Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh-Guldberg O (2011) Validation of housekeeping genes for gene expression studies in Symbiodinium exposed to thermal and light stress. Mar Biotechnol 13:355–365

    Article  CAS  Google Scholar 

  • Shi X, Zhang H, Lin S (2013) Tandem repeats, high copy number and remarkable diel expression rhythm of form II RuBisCO in Prorocentrum donghaiense (Dinophyceae). PLoS One 8:e71232

    Article  CAS  Google Scholar 

  • Shi X, Li L, Guo C, Lin X, Li M, Lin S (2015) Rhodopsin gene expression is regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum. Front Microbiol 6:555

    Article  Google Scholar 

  • Shi X, Lin X, Li L, Li M, Palenik B, Lin S (2017) Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate. ISME J 11:2209–2218

    Article  CAS  Google Scholar 

  • Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406:23–35

    Article  CAS  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229

    Article  Google Scholar 

  • Wu Z-J, Tian C, Jiang Q, Li X-H, Zhuang J (2016) Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep 6:19748

    Article  CAS  Google Scholar 

  • Xu Y, Zhu X, Gong Y, Xu L, Wang Y, Liu L (2012) Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR. Biochem Biophys Res Commun 424:398–403

    Article  CAS  Google Scholar 

  • Zhang C, Lin S (2019) Initial evidence of functional siRNA machinery in dinoflagellates. Harmful Algae 81:53–58

    Article  CAS  Google Scholar 

  • Zhang C, Lin S, Huang L, Lu W, Li M, Liu S (2014) Suppression subtraction hybridization analysis revealed regulation of some cell cycle and toxin genes in Alexandrium catenella by phosphate limitation. Harmful Algae 39:26–39

    Article  Google Scholar 

  • Zhang C, Luo H, Huang L, Lin S (2017) Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi. Harmful Algae 67:74–84

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (grant nos. 41976130 and 41606121), the Demonstration Project for Innovative Development of Fuzhou’s Marine Economy during the 13th Five-Year Plan, China (nos. FZHJ15 and FZHJ04), Fuzhou Administration of Science and Technology, China (no. 2018-G-47), and the Special Foundation for Yong Scientists of Fuzhou University, China (no. XRC-18008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinguo Shi or Jianfeng Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Diel pattern of KFcp expression normalized against two most stable genes (α-tub and gapdh). Black bar denoted dark period and other time points are in light period. Mean ± standard deviation (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Xiao, Y., Liu, L. et al. Exploring reliable reference genes for gene expression normalization in Karenia mikimotoi using real-time PCR. J Appl Phycol 32, 431–440 (2020). https://doi.org/10.1007/s10811-019-01961-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01961-z

Keywords

Navigation