Skip to main content

Advertisement

Log in

Effect of microalgae cell composition and size on responsiveness to ultrasonic harvesting

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Ultrasonic harvesting could reduce the energy consumption and costs associated with separating microalgae from growth media. The responsiveness of microalgae cells to an ultrasonic standing wave depends on the cell radius and acoustic contrast factor (ACF). The ACF can vary as cell composition (e.g. lipid, protein, carbohydrate content) varies depending on the algae strain, cultivation conditions, and growth stage. Two independent experimental methods were used to characterize the ACF of three algae ;strains—Nannochloropsis salina, Chlamydomonas reinhardtii, and Tetraselmis chuii—as a function of dynamic cellular composition over 9- to 14-day growth periods. For N. salina, lipid content increased from 25 ± 1% to 33 ± 1% ash-free dry weight (AFDW) and ACF decreased by 46% (from 0.041 ± 0.002 to 0.022 ± 0.002) between growth days 3 and 10. For C. reinhardtii, lipid content increased from 26 ± 1% to 40 ± 1% AFDW and ACF decreased by 33% (from 0.051 ± 0.013 to 0.034 ± 0.006) between growth days 3 and 9. For T. chuii, lipid content and ACF remained stable (~ 10% AFDW and ~ 0.3) over the growth period. ACF decreased as lipid content increased because lipids have a negative ACF in the growth media; however, cell size had a greater impact on cell responsiveness because the ratio of the acoustic radiation force to the drag force is proportional to cell radius squared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97:253–261

    Article  CAS  PubMed  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47

    Article  CAS  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    Article  CAS  Google Scholar 

  • Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y-S, Zheng Y, VanderGheynst JS (2011) Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids 46:95–103

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Coons JE, Kalb DM, Dale T, Marrone BL (2014) Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Res 6:250–270

    Article  Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Divakaran R, Sivasankara Pillai VN (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • DOE (2016) National Algal Biofuels Technology Review. U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Washington, D.C.

  • Eppink MHM, Olivieri G, Reith H, van den Berg C, Barbosa M, Wijffels RH (2017) From current algae products to future biorefinery practices: a review. In: Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  • González López CV, García M del CC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  CAS  Google Scholar 

  • Goodenough U, Blaby I, Casero D, Gallaher SD, Goodson C, Johnson S, Lee J-H, Merchant SS, Pellegrini M, Roth R, Rusch J, Singh M, Umen JG, Weiss TL, Wulan T (2014) The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii. Eukaryot Cell 13:591–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gröschl M (1998) Ultrasonic separation of suspended particles - part I: fundamentals. Acta Acust United Acust 84:432–447

  • Hansen PJ (2000) Use of a Hemacytometer. University of Florida Department of Animal Sciences, Gainesville, FL

  • Hess D, Napan K, McNeil BT, Torres EM, Guy T, McLean JE, Quinn JC (2017) Quantification of effects of flue gas derived inorganic contaminants on microalgae growth system and end fate of contaminants. Algal Res 25:68–75

    Article  Google Scholar 

  • Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hincapié Gómez E, Marchese AJ (2015) An ultrasonically enhanced inclined settler for microalgae harvesting. Biotechnol Prog 31:414–423

    Article  CAS  PubMed  Google Scholar 

  • Hincapié Gómez E, Tryner J, Aligata AJ, Quinn JC, Marchese AJ (2018) Measurement of acoustic properties of microalgae and implications for the performance of ultrasonic harvesting systems. Algal Res 31:77–86

    Article  Google Scholar 

  • Hunter L, Siegel S (1942) The variation with temperature of the principal elastic moduli of NaCl near the melting point. Phys Rev 61:84–90

    Article  CAS  Google Scholar 

  • Lananan F, Jusoh A, Ali N, Lam SS, Endut A (2013) Effect of Conway medium and f/2 medium on the growth of six genera of South China Sea marine microalgae. Bioresour Technol 141:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ, Zevenhoven M, Ashman PJ, van Eyk PJ, Hupa M, de Nys R, Lewis DM (2014) Algal biomass: occurrence of the main inorganic elements and simulation of ash interactions with bed material. Energy Fuel 28:4622–4632

    Article  CAS  Google Scholar 

  • Leckey CAC, Hinders MK (2012) Viscous effects in the acoustic manipulation of algae for biofuel production. J Appl Phycol 24:145–156

    Article  Google Scholar 

  • Lourenço SO, Marquez UML, Mancini-Filho J, Barbarino E, Aidar E (1997) Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture 148:153–168

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ, Povey MJW (1987) Ultrasonic velocity as a probe of emulsions and suspensions. Adv Colloid Interf Sci 27:285–316

    Article  CAS  Google Scholar 

  • Miller DM, Jones JH, Yopp JH, Tindall DR, Schmid WE (1976) Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch Microbiol 111:145–149

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang J-W (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333

    Article  CAS  PubMed  Google Scholar 

  • Napan K, Hess D, McNeil B, Quinn JC (2015) Quantification of heavy metals and other inorganic contaminants on the productivity of microalgae. J Vis Exp 10(101):e52936

  • Pashovkin TN, Sadikova DG (2009) Cell exfoliation, separation, and concentration in the field of a standing ultrasonic wave. Acoust Phys 55:584–593

    Article  CAS  Google Scholar 

  • Peck R, Olsen C, Devore J (2009) Introduction to Statistics and Data Analysis, 3rd edn. Brooks/Cole, Belmont, CA

  • Peterson GL (1979) Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100:201–220

    Article  CAS  PubMed  Google Scholar 

  • Pirwitz K, Flassig RJ, Rihko-Struckmann LK, Sundmacher K (2015) Energy and operating cost assessment of competing harvesting methods for D. salina in a β-carotene production process. Algal Res 12:161–169

    Article  Google Scholar 

  • Quinn JC, Catton K, Wagner N, Bradley TH (2012a) Current large-scale US biofuel potential from microalgae cultivated in photobioreactors. BioEnergy Res 5:49–60

    Article  CAS  Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  CAS  PubMed  Google Scholar 

  • Quinn JC, Yates T, Douglas N, Weyer K, Butler J, Bradley TH, Lammers PJ (2012b) Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol 117:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ravindran B, Kurade MB, Kabra AN, Kurade MB, Kabra AN, Jeon B-H, Gupta SK (2017) Recent advances and future prospects of microalgal lipid biotechnology. In: Gupta SK, Malik A, Bux F (eds) Algal biofuels: recent advances and future prospects. Springer International Publishing, Cham, pp 1–37

    Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  PubMed  Google Scholar 

  • Suh WI, Mishra SK, Kim T-H, Farooq W, Moon M, Shrivastav A, Park MS, Yang J-W (2015) Direct transesterification of wet microalgal biomass for preparation of biodiesel. Algal Res 12:405–411

    Article  Google Scholar 

  • Therneau T (2018) deming: Deming, Thiel-Sen and Passing-Bablock Regression. In: Compr. R Arch. Netw. https://CRAN.R-project.org/package=deming. Accessed 11 Jul 2018

  • Urick RJ (1947) A sound velocity method for determining the compressibility of finely divided substances. J Appl Phys 18:983–987

    Article  Google Scholar 

  • Van Wychen S, Laurens, LML (2015) Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO

  • Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Mulaert K (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zhao Q, Miao X, Shi J (2013) Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour Technol 147:499–507

    Article  CAS  PubMed  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Kara Gustafson and Micah Bush for their contributions in completing the experiments and Esteban Hincapié Gómez for providing consultation on test protocols. None of the sponsors were involved in the design of the methods used to measure acoustic contrast factor; the collection, analysis, and interpretation of data; writing of the article; or the decision to submit the article for publication.

Funding

The authors AJA, JT and AJM received funding support from the US Department of Energy (grant DE-EE0007089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Marchese.

Ethics declarations

There are no conflicts, informed consent, and human or animal rights applicable.

Electronic supplementary material

ESM 1

(PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aligata, A.J., Tryner, J., Quinn, J.C. et al. Effect of microalgae cell composition and size on responsiveness to ultrasonic harvesting. J Appl Phycol 31, 1637–1649 (2019). https://doi.org/10.1007/s10811-018-1682-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1682-0

Keywords

Navigation