Skip to main content
Log in

Comparative detection of Karenia mikimotoi by exponential rolling circle amplification (E-RCA) and double-ligation E-RCA

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Karenia mikimotoi is a globally distributed, toxic, bloom-forming dinoflagellate. The development of rapid, precise and sensitive detection methods is essential for the field monitoring of this harmful alga. In this study, exponential rolling circle amplification (E-RCA) and double-ligation E-RCA (dlE-RCA) were established for the detection of K. mikimotoi. The partial large subunit rDNA (D1–D2) of K. mikimotoi was PCR amplified, cloned and then sequenced. The resultant sequence was used to perform alignment analysis for species-specific regions and consequently design padlock probes and primers for E-RCA and dlE-RCA. Both E-RCA and dlE-RCA detection protocols were established and their parameters were optimized. dlE-RCA can avoid self-cyclization of PLP compared with E-RCA. The optimized parameters were as follows: ligation temperature, 61 °C; ligation time, 60 min (E-RCA)/30 min (dlE-RCA); amplification temperature, 61 °C (E-RCA)/64 °C (dlE-RCA); and amplification time, 30 min (E-RCA)/40 min (dlE-RCA). Specificity tests showed that both E-RCA and dlE-RCA were specific for K. mikimotoi. Sensitivity comparison indicated that E-RCA was 10-fold more sensitive than PCR and the sensitivity of dlE-RCA was comparable with that of PCR. Tests with simulated field samples suggested that the developed E-RCA and dlE-RCA obtained detection limits of 1 and 10 cells, respectively. Positive E-RCA and dlE-RCA could be confirmed by visual observation of coloration reaction with the addition of fluorescent SYBR Green I dye to the reaction tube. The developed E-RCA and dlE-RCA were also efficient for field samples with target cell densities ranging from 1 cell mL−1 to 1000 cells mL−1. These results suggest that the established E-RCA and dlE-RCA detection protocols show promising applications in the field monitoring of K. mikimotoi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Kandari MA, Highfield AC, Hall MJ, Hayes P, Schroeder DC (2011) Molecular tools separate harmful algal bloom species, Karenia mikimotoi, from different geographical regions into distinct sub-groups. Harmful Algae 10:636–643

    Article  Google Scholar 

  • Aoki K, Kameda T, Yamatogi T, Ishida N, Hirae S, Kawaguchi M, Syutou T (2017) Spatial-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: factors controlling horizontal and vertical distribution. Mar Pollut Bull 43:1–10

    Google Scholar 

  • Cai J, Yin YP, Ge JJ, Chen HJ, Huang GJ (2009) Detection of Tilletia controversa with HE-RCA approach. Sci Agric Sin 42:3493–3500

    CAS  Google Scholar 

  • Cai PP (2016) Application of hyperbranched rolling circle amplification to detection of several marine toxin-producing microalgae. Master dissertation, Harbin Institute of Technology

  • Chen GF, Cai PP, Zhang CY, Wang YY, Zhang SB, Guo CL, Lu DD (2015) Hyperbranched rolling circle amplification as a novel method for rapid and sensitive detection of Amphidinium carterae. Harmful Algae 47:66–74

    Article  CAS  Google Scholar 

  • Chen GF, Liu Y, Zhang CY, Ma CS, Zhang BY, Wang GC, Xu Z, Lu DD (2013) Development of rRNA-targeted probes for detection of Prorocentrum micans (Dinophyceae) using whole cell in situ hybridization. J Appl Phycol 25:1077–1089

    Article  CAS  Google Scholar 

  • Chen X, Zhou Q, Duan W, Zhou C, Duan L, Zhang HL, Sun AL, Yan XJ, Chen J (2016) Development and evaluation of a DNA microarray assay for the simultaneous detection of nine harmful algal species in ship ballast and seaport waters. Chin J Oceanol Limnol 34:86–101

    Article  CAS  Google Scholar 

  • Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317

    Article  Google Scholar 

  • Davidson K, Miller P, Wilding TA, Shutler J, Bresnan E, Kennington K, Swan S (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 8:349–361

    Article  Google Scholar 

  • de Salas MF, Bolch CJ, Botes L, Nash G, Wright SW, Hallegraeff GM (2003) Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J Phycol 39:1233–1246

    Article  Google Scholar 

  • Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using Phi 29DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099

    Article  CAS  Google Scholar 

  • Fahy E, Kwoh DY, Gingeras TR (1991) Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. Genome Res 1:25–33

    Article  CAS  Google Scholar 

  • Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Nat Acad Sci USA 92:4641–4645

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 29–60

    Chapter  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Guo H (2004) Red tides and its causative organisms. In: Guo H (ed) Illustrations of plankton responsible for the blooms in Chinese coastal waters. Marine Press, Beijing, p 1

    Google Scholar 

  • Guo H, Ding DW, Lin FA, Guan CJ (2015) Characteristics and patterns of red tide in China coastal waters during the last 20a. Adv Mar Sci 33:547–558

    Google Scholar 

  • Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, Mackenzie L (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J Phycol 40:165–179

    Article  Google Scholar 

  • Hulburt EM (1957) The taxonomy of unarmored Dinophyceae of shallow embayments on Cape Cad, Massachusetts. Biol Bull 112:196–219

    Article  Google Scholar 

  • Kaocharoen S, Wang B, Tsui KM, Trilles L, Kong F, Meyer W (2008) Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis 29:3183–3191

    CAS  PubMed  Google Scholar 

  • Li XJ, Luo JF, Xiao PF, Shi XL, Tang C, Lu ZH (2009) Genotyping of multiple single nucleotide polymorphisms with hyperbranched rolling circle amplification and microarray. Clin Chim Acta 399:40–44

    Article  CAS  Google Scholar 

  • Lin JL, Yan T, Zhang QC, Wang YF, Liu Q, Zhou MJ (2016) Effects of Karenia mikimotoi blooms on antioxidant enzymes in gastropod abalone, Haliotis discus hannai. Mar Sci 40:17–22

    Google Scholar 

  • Liu F (2010) Research on the rolling circle amplification of Candidatus liberibacter and multiplex RT-PCR detection of virus like pathogens Master dissertation, Huazhong Agricultural University

  • Liu Y, Guo YL, Jiang GL, Zhou SJ, Sun Q, Chen X, Chang XJ, Xing A, Du FJ, Jia HY, Zhang ZD (2013) Application of hyperbranched rolling circle amplification for direct detection of Mycobacterium tuberculosis in clinical sputum specimens. PLoS One 8:e64583

    Article  CAS  Google Scholar 

  • Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232

    Article  CAS  Google Scholar 

  • Mikulski CM, Morton SL, Doucette GJ (2005) Development and application of LSU rRNA probes for Karenia brevis in the Gulf of Mexico, USA. Harmful Algae 4:49–60

    Article  CAS  Google Scholar 

  • Nilsson M (2006) Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem Cell Biol 126:159–164

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  CAS  Google Scholar 

  • Noyer C, Abot A, Trouilh L, Leberre VA, Dreanno C (2015) Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp. and other harmful algal species. J Microbiol Meth 112:55–66

    Article  CAS  Google Scholar 

  • Oda M (1935) Gymnodinium mikimotoi Miyake et Kominami n. sp. (MS.) no akashiwo to ryusando no koka. (The red tide of Gymnodinium mikimotoi Miyake et Kominami and the influence of copper sulfate on the red tide of November 1972). Zoo Mag 47:35–48

    Google Scholar 

  • Ottway B, Parker M, McGrath D, Crowley M (1979) Observation on a bloom of Gyrodinium aureolum Hulbert on the south coast of Ireland, summer 1976, associated with mortalities of littoral and sub-littoral organisms. Irish Fish Investig Ser B 18:1–9

    Google Scholar 

  • Park J, Kim H, Lee S (1989) Studies on red tide phenomena in Korean coastal waters. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 37–40

    Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Article  Google Scholar 

  • Robin R, Kanuri VV, Muduli PR, Mishra RK, Jaikumar M, Karthikeyan P, Suresh Kumar C, Saravana Kumar C (2013) Dinoflagellate bloom of Karenia mikimotoi along the southeast Arabian Sea, bordering western India. J Ecosyst 2013

  • Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999–1011

    Article  CAS  Google Scholar 

  • Sooknanan R, Malek LT (1995) NASBA. Nat Biotechnol 13:563–564

    Article  CAS  Google Scholar 

  • Sournia A (1995) Red tide and toxic marine phytoplankton of the world ocean: an inquiry into biodiversity. In: Lassus P, Arzul G, Erard E, Gentien C, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 103–112

  • Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD (2005) Diagnostic application of padlock probes–multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 33:e70

    Article  Google Scholar 

  • Takayama H, Adachi R (1984) Gymnodinium nagasakiense sp. nov., a red tide forming dinophyte in the adjacent waters of Japan. Bull Plankton Soc Jpn 31:7–14

    Google Scholar 

  • Tangen K (1977) Blooms of Gyrodinium aureolum (Dinophygeae) in North European waters, accompanied by mortality in marine organisms. Sarsia 63:123–133

    Article  Google Scholar 

  • Tao Z, Cai XF, Yan ZQ, Hu XB, Yang SL, Gong Y (2003) HE-RCA and application in detection of genetically modified plant. Chinese J Biotech 19:294–300

    CAS  Google Scholar 

  • Ulrich RM, Casper ET, Campbell L, Richardson BC, Heil A, Paul JH (2010) Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae 9:116–122

    Article  CAS  Google Scholar 

  • Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800

    Article  CAS  Google Scholar 

  • Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696

    Article  CAS  Google Scholar 

  • Wang B, Potter SJ, Lin Y, Cunningham AL, Dwyer DE, Su Y, Ma X, Hou Y, Saksena NK (2005) Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol 43:2339–2444

    Article  CAS  Google Scholar 

  • Wang, Q.T., 2013. A preliminary study of rolling circle amplification of detection and principle. Master dissertation, Shanghai Ocean University

  • Wang XL, Wang XY, Liang CC, Dong P, Liang XG (2012) Research progress of rolling circle amplification of DNA. Sci Technol Food Industry 33:358–363

    Google Scholar 

  • Wang XM, Teng D, Guan QF, Tian F, Wang JH (2015) Detection of genetically modified crops using multiplex asymmetric polymerase chain reaction and asymmetric hyperbranched rolling circle amplification coupled with reverse dot blot. Food Chem 173:1022–1029

    Article  CAS  Google Scholar 

  • Xu GL, Hu L, Zhong HY, Wang HY, Yusa SI, Weiss TC, Romaniuk PJ, Pickerill S, You QM (2012) Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Sci Rep 2:246

    Article  Google Scholar 

  • Yuan J, Mi TZ, Zhen Y, Yu ZG (2012) Development of a rapid detection and quantification method of Karenia mikimotoi by real-time quantitative PCR. Harmful Algae 17:83–91

    Article  CAS  Google Scholar 

  • Zhang FY, Ma LB, Xu ZL, Zheng JB, Shi YH, Lu YN, Miao YP (2009) Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal amplification. Harmful Algae 8:839–842

    Article  Google Scholar 

  • Zhao H, Lu ZH (2014) Detection of DNA methylation by hyperbranched rolling circle amplification and DNA microarray. Chinese Chem Lett 25:1559–1564

    Article  CAS  Google Scholar 

  • Zhao YR, Yin WL, Wang Y, Wang GP, Li BF (2014) Establishment of a sensitive and specific hyper-branched rolling circle amplification assay and test strip for TSV. J Virol Methods 209:41–46

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Scientific Foundation of China (No. 41476086, 31600309, and 41106082), HIT Environment and Ecology Innovation Special Funds (No. HSCJ201622), and HIT Scientific Research Innovation Fund/the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.201702, and HIT.NSRIF.201709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, R., Wang, Y. et al. Comparative detection of Karenia mikimotoi by exponential rolling circle amplification (E-RCA) and double-ligation E-RCA. J Appl Phycol 31, 505–518 (2019). https://doi.org/10.1007/s10811-018-1584-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1584-1

Keywords

Navigation